跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉承志
研究生(外文):Cheng-Chih Liu
論文名稱:應用葉綠素螢光於高密度輪蟲養殖監測系統之研究
論文名稱(外文):Using Chlorophyll Fluorescence Monitoring in the Development of a High Density Culture System for Rotifer
指導教授:尤瓊琦
指導教授(外文):Chung-Chyi Yu
口試委員:黃振文洪滉祐
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:生物餌料輪蟲葉綠素螢光
外文關鍵詞:Live FoodRotiferChlorophyll Fluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在利用葉綠素螢光獲致一個快速且有效之輪蟲養殖系統之監測參數。探討Brachionus rotundiformis極小型輪蟲 (SSR)培養時,輪蟲與擬球藻(Nannochloropsis oculata)混合培養溶液之吸收光譜與葉綠素螢光參數隨時間之變化,探討輪蟲體內攝食之擬球藻細胞與輪蟲本身透明狀對吸收光譜及葉綠素螢光強度差值之影響,期能作為輪蟲於培養溶液中密度之量測分析。其中環境因子試驗獲致培養海水鹽度25 ppt、培養溫度30℃、pH值7.5~8.5之間及曝氣量45 ml/min之條件下,驗證輪蟲能有良好之增值環境。試驗設定初始餌料密度分別為800×104 cells/ml、1,200×104 cells/ml及1,600×104 cells/ml三組,試驗結果獲致較高之初始餌料密度1,600×104 cells/ml組,其高峰帶卵率達0.754 eggs/female,且於接種27小時後,其輪蟲數目達1667 ind./ml,為初始餌料密度之2.38倍。以本研究設定之培養海水鹽度25 ppt、培養溫度30℃、pH值7.5~8.5之間及曝氣量45 ml/min之條件下,獲致隨培養時間增加若葉綠素螢光淬滅值變化量高於82.9%,為高峰帶卵率階段,輪蟲數目始有增值現象,且能於測得高峰帶卵率階段後隨培養時間增加至第27小時,初始餌料接種密度分別為800×104 cells/ml、1,200×104 cells/ml及1,600×104 cells/ml之三組之輪蟲數目能分別有1.49倍、1.59倍及1.68倍等良好增值現象。
The purpose of this study was to use chlorophyll fluorescence monitoring in the development system for rotifer. The study analyzed the relationship between Rotifers- Nannochloropsis oculata mixed cultivation solution and chlorophyll fluorescence when cultivating a system for Brachionus rotundiformis, to realized the impact between of the rotifer’s colorless skin and absorption spectrum or chlorophyll fluorescence quenching to find a measurement of population density of rotifer during the progress. The best environment conditions for rotifer cultivation were set a temperature of 30°C, salinity 25 ppt, pH 7.5~8.5 and aeration with 45 ml/min.
The experiments set three different of initial feed densities, 800, 1,200 and 1,600×104 cells/ml. The results of experiments had demonstrated that a higher initial feed density, which initial food density is 1,600×104 cells/ml, obtained a greater egg ratio of the rotifer, had highest egg ratio with 0.754 eggs/female. The density at 27 hour after inoculation was 1667 individual /ml, which was up to the initial feed density of 2.38 times.
With the environment conditions of study, that were set a temperature of 30°C, salinity 25 ppt, pH 7.5~8.5 and aeration with 45 ml/min, we found if the rate of change of chlorophyll fluorescence had over 82.9 % during cultivating, it meant the cultivation system of rotifer approached the highest egg ratio period, the popular density of rotifer started increasing. And three different of initial feed densities, which means 800, 1,200 and 1,600×104 cells/ml, there rotifer density at 27 hour after inoculation were up to the density of highest egg ratio period of 1.49, 1.59 and 1.68 times, they all had great growth rate.
摘要............................................................................................................i
Abtract.......................................................................................................iii
目錄............................................................................................................v
圖目錄.....................................................................................................viii
表目錄.......................................................................................................xi
第一章 緒言..............................................................................................1
1-1 前言..............................................................................................1
1-2 研究目的......................................................................................2
第二章 文獻探討......................................................................................3
2-1 微藻..............................................................................................3
2-2 影響微藻生長之環境因子..........................................................3
2-2-1 光源....................................................................................3
2-2-2 溫度....................................................................................4
2-2-3 鹽度....................................................................................5
2-2-4 營養源................................................................................5
2-2-5 曝氣量................................................................................6
2-3 實驗對象浮游生物簡介..............................................................7
2-3-1 浮游生物簡介....................................................................7
2-3-2 海水輪蟲............................................................................8
2-3-3 影響輪蟲成長之環境因子..............................................11
2-3-3-1 光照........................................................................11
2-3-3-2 溫度........................................................................11
2-3-3-3 鹽度........................................................................12
2-3-3-4 酸鹼值....................................................................13
2-3-3-5 溶氧........................................................................13
2-3-3-6 氨............................................................................13
2-3-3-7 飼料........................................................................14
2-3-4輪蟲養殖生長之指標.......................................................15
第三章 試驗材料與方法........................................................................17
3-1 試驗設計與規劃........................................................................17
3-2 試驗材料....................................................................................18
3-2-1 微藻..................................................................................18
3-2-2 營養液..............................................................................19
3-2-3 輪蟲..................................................................................19
3-3 試驗設備與量測方法................................................................19
3-3-1 微藻細胞密度量測方法..................................................20
3-3-2 輪蟲密度與帶卵率量測方法..........................................21
3-3-3 吸收光譜值量測方法......................................................21
3-3-4 葉綠素螢光量測方法......................................................22
3-3-5 經300目之尼龍網分離後內外培養溶液差異之試驗..23
第四章 結果與討論................................................................................25
4-1 經300目之尼龍網分離後內、外培養溶液差異試驗結果....25
4-1-1 微藻細胞密度量測結果..................................................25
4-1-2 吸收光譜值量測結果......................................................27
4-1-3 葉綠素螢光值量測結果..................................................34
4-2輪蟲養殖系統試驗結果.............................................................38
4-2-1 輪蟲個數與餌料微藻密度量測結果..............................38
4-2-2 輪蟲帶卵率量測結果......................................................41
4-2-3 吸收光譜值量測結果......................................................43
4-2-4 葉綠素螢光值量測結果..................................................47
第五章 結論............................................................................................53
第六章 參考文獻....................................................................................56
1.李龍雄。1992。水產養殖學(下冊)。再版。pp.49-68。前程出版社。高雄。
2.陳明耀。1997。生物餌料培養。出版。pp.165-198。水產出版社。台北。
3.鄭重,李少菁,許振祖(1984)。海洋浮游生物學1-599。基隆。
4.蘇惠美。1993。國立海洋生物博物館魚貝介幼生初期餌料生物培養與應用(一)三種微藻之增值需求。國立海洋生物博物館籌備處,38.
5.蘇惠美。1999。餌料生物之培養與利用。pp.65-86。台灣省水產試驗所。基隆。
6.蘇惠美。2001。餌料生物-海水輪蟲之培養與利用(二)。水產動物防疫簡訊。
7.馬聿安。2009。高密度輪蟲養殖系統之研發。國立中興大學生物產業機電工程學系研究所碩士論文。台中。
8.馬聿安、楊詠平、黃振文、尤瓊琦。2014。利用簡易式葉綠素螢光感測器於葉綠素螢光反應之研究。農機與生機論文研討會論文集,台中,p.78。
9.Alver, M. O., T. Tenn?y, J. A. Alfredsen, and G. Øie. 2007. Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks. Aquacultural Engineering 36(2):115-121.
10.Boraas, M. E., and W. N. Bennett. 1988. Steady-state rotifer growth in a two-stage, computer-controlled turbidostat. Journal of Plankton Research 10(5):1023-1038.
11.Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. Del Borghi. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48(6):1146-1151.
12.Doohan, M. 1973. An energy budget for adult Brachionus plicatilis muller (Rotatoria). Oecologia 13(4):351-362.
13.Fulks, W. and K. L. Main, 1991, Rotifer Brachionus plicatilis. production systems. In: Fulks, W., Main, K. L Eds.., Rotifer and Microalgae Culture Systems. Proceedings of a US-Asia Workshop, Honolulu, HA January 28-31. pp. 3-52.
14.Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. L. Harrison. 2011. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods 85(2):119-123.
15.Hansen, B., T. Wernberg-M?ller, and L. Wittrup. 1997. Particle grazing efficiency and specific growth efficiency of the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology 215(2):217-233.
16.Janssen, M., P. Slenders, J. Tramper, L. R. Mur and Rene’H. Wijffels. 2001. Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzymes and Microbial Technology 29: 298-305
17. Korstad, J., A. Neyts, T. Danielsen, I. Overrein, and Y. Olsen. 1995. Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313-314(1):395-398.
18.Koste, W. 1980. Das rädertier-porträt. Brachionus plicatilis, ein alzwasserrädertier. Mikrokosmos 5: 148-155.
19.Kozul, V. and B. Skaramuca, 1998. The effects of temperature stress on populations of the rotifer Brachionus plicatilis Muller in culture. Oceanographic Literature Review 45(8): 1439-1440.
20.Lam, M. K., and K. T. Lee. 2012. Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production. Chemical Engineering Journal 191: 263-268.
21.Lam, M. K., and K. T. Lee. 2012. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applies Energy 94: 303-308.
22.Lavens, P., and P. Sorgeloos. 1996. Manual on the production and use of live food for aquaculture. No. 361.pp. Food and Agriculture Organization (FAO).
23.Lichtenthaler, H.K., Rinderle, U. 1988b. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19(sup1), S29-S85.
24.Lubzens, E., O. Gibson, O. Zmora, and A. Sukenik. 1995. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133(3–4):295-309.
25.Lubzens, E., O. Zmora, and Y. Barr. 2001. Biotechnology and aquaculture of rotifers. Hydrobiologia 446-447(1):337-353.
26.Ma, Y.-A., F.-J. Wang, and C.-C. Yu. 2011. Evaluation of the feasibility of using absorption spectroscopy in rotifer culture. International symposium on grouper culture T5-6, Pingtung, Taiwan
27.Makoto, O., and I. Tsutomu. 1984. Methods in marine zooplankton ecology.pp.
28.Rao, A. R., C. Dayananda, R, Sarada, T. R. Shamala and G. A. Ravishankar. 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents." Bioresource Technology 98(3): 560-564.
29.Rothhaupt, K. O. 1990a. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35(1):16-23.
30.Rothhaupt, K. O. 1990b. Population growth rates of two closely related rotifer species: effects of food quantity, particle size, and nutritional quality. Freshwater Biology 23(3):561-570.
31.Ruttner-Kolisko, A., 1972. Influence of Fluctuating Temperature on Plankton Rotifers. II. Laboratory Experiments. Internationale Vereinigung fur Theoretische und Angewandte Limnologie. 20(4): 2400-2405.
32.Scott, A. P. and S. M. Baynes, 1978.Effect of Algal Diet and Temperature on the Biochemical Composition of the Rotifer, Brachionus Plicatilis. Aquaculture 14(3): 247-260.
33.Snell, T. W. and E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis. (Müller). J. Exp. Mar. Biol. Ecol. 124: 73-85.
34.Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101(2):87-96.
35.Sorgeloos, P. and P. Lavens, 1996. Manual on the production and use of live food for aquaculture. Fisheries Technical Paper, Food and Agriculture Organization of the United Nation, Rome. 361: 61-100.
36.Stemberger, R. S., and J. J. Gilbert. 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66(4):1151-1159.
37.Takagi, M., Karseno and T. Yoshida. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioennnering 101(3): 223-226.
38.Trejo, A., L. E. de-Bashan, A. Hartmann, J.-P. Hernandez, M. Rothballer, M. Schmid, and Y. Bashan. 2012. Recycling waste debris of immobilized micro algae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experiment Botany 75:65-73.
39.Walz, N., T. Hintze, and R. Rusche. 1997. Algae and rotifer turbidostats: studies on stability of live feed cultures. Hydrobiologia 358(1):127-132.
40.Williams, R. B. 1964. Division Rates of Salt Marsh Diatoms in Relation to Salinity and Cell Size. Ecology 45(4): 877-880.
41. Yang, C.-Y., and J.-J. Chou. 2000. Classification of rotifers with machine vision by shape moment invariants. Aquacultural Engineering 24(1):33-57.
42.Yoshimura, K., K. Tanaka, and T. Yoshimatsu. 2003. A novel culture system for the ultra-high-density production of the rotifer, Brachionus rotundiformis--a preliminary report. Aquaculture 227(1-4): 165-172.
43.Zhang, K., N. Kurano, and S. Miyachi. 2002. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess and Biosystems Engineering 25(2):97-101.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top