(54.236.62.49) 您好!臺灣時間:2021/03/08 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉榮耀
研究生(外文):Rong-Yao Liu
論文名稱:遮蔭對平地有機茶園茶樹生長與茶菁主要成分之影響及草生栽培之植相變遷
論文名稱(外文):Effect of shading on the growth and major composition content of tea (Camellia sinensis L.) plant grown in organic tea garden, and change in plant flora of grassland cultivation.
指導教授:王慶裕王慶裕引用關係
口試委員:謝清祥黃文達蔣永正徐玲明
口試日期:2017-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:180
中文關鍵詞:茶樹遮蔭草生栽培
外文關鍵詞:teaCamellia sinensis L.shadinggrassland cultivation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:467
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
茶樹(Camellia sinensis (L.) Kuntze)為特用作物中的嗜好料作物。近年來台灣為追求更好之茶菁品質,開墾茶區逐漸往中高海拔地區移動,導致嚴重破壞山坡地水土保持。此外,政府鼓勵多加利用休耕農地,因此將茶樹改種至平地休耕地之可行性值得進一步評估。本研究以人為遮蔭方式嘗試減少平地強光照射,經高遮蔭程度處理後能改善金萱、紅玉、紅韻及青心烏龍四品種茶樹之存活率。然而,遮蔭對於株高、代表枝長度、分枝數目、捲葉數目、未熟葉數目、成熟葉數目及芽數目等農藝性狀未能顯現出差異性。此外,分析茶菁成分結果顯示,經遮蔭後四茶樹品種中葉綠素的含量呈現遮蔭80% > 50% >控制組的趨勢。遮蔭處理後會明顯提升四茶樹品種中茶胺酸的含量。增加遮蔭程度會使茶樹中的咖啡因含量增加,且大葉種的效果比小葉種明顯。經50%及80%遮蔭處理後均顯著降低多元酚含量,但兩種處理間無顯著差異。兒茶素類部分,本研究結果顯示茶樹經遮蔭後表兒茶素(epicatechin, EC)、沒食子兒茶素(gallocatechin, GC)與表兒茶素沒食子酸酯(epicatechin gallate, ECG)的含量在大部分的品種及季節會下降,而其他兒茶素類的變化則較無一致性。本研究並搭配機械除草控制平地茶園草生栽培之草生草生長。經連續性機械除草後草生栽培之草生草總覆蓋率皆維持在84%以上;此外,禾本科草生草的覆蓋率大幅提升,而闊葉型草生草覆蓋率則大幅減少,至於莎草科草生草因所佔比例小故影響不大。
Tea (Camellia sinensis (L.) Kuntze), a hobby crop, is a special crop. In recent years, in order to pursue the better quality of tea, tea farmers in Taiwan have gradually cultivated tea plants in the high altitude areas; however, which might result in a serious damage to the soil and water conservation. In addition, the government encourages farmers to use the fallow fields for the past few years. Therefore, the feasibility of planting tea plants in the fallow fields, especially in the level ground instead of high altitude area was estimated in this study. An artificial shading was used to reduce the light intensity in the organic tea garden. It was obvious that the shading treatment significantly improved the survival rate of tea plant for all four varieties, including Jinxuan, Hongyu, Hongyun and Chin-Shin Oolong. However, the shading treatment did not change plant height, the representative branch length, as well as the number of branch, curled leaf, immature leaves, mature leaf, and bud. In addition, the analysis of several major compositions showed that the contents of both chlorophyll and theanine were increased by shading. Also, the amount of caffeine in tea leaves increased with the shading extent, and the shading effect on the large-leaf variety is stronger than on the small-leaf variety. After high shading treatment, the polyphenol content significantly decreased. In this study, the results showed that the contents of epicatechin (EC), gallocatechin (GC) and epicatechin gallate (ECG) were all decreased by shading strength, while the content of other catechins did not change as expectation.
In this study, a mechanical weeding was used to control the weed growth of grassland. After continuous mechanical weeding for one years, the total coverage of plants maintained at 84% or more. In addition, the grass plants were increased significantly and broad-leaf plants were reduced significantly within three months; however, the sedge plants were not affected significantly by this mechanical weeding might due to the limited population of this kind of plants.
目次
摘要…………………………………………………………………….…i
目次……………………………………………………………..………..v
表目錄………………………………………………………………….viii
圖目錄…………………………………………………………………..ix
第一章 緒言………………………………………………………...…...1
第二章 前人研究……………………………………………………..…4
一、 平地有機茶園之草相變遷…………………………………….4
(一)茶樹生長環境與氣候土宜…………………………..………..4
(二)平地有機茶園之草生草管理………………………..………..5
(三)草生栽培管理及維護……………………………………..…..6
二、平地與高山氣候環境差異………………………………….…...7
三、遮蔭處理對茶樹生長及茶菁主要成分之影響………………....8
(一)茶樹生長型態…………………………………………..……..8
(二)遮蔭對茶樹生長之影響…………………………………..…..8
(三)茶菁主要成分…………………………………………..….….9
(四)遮蔭與茶菁主要成分…………………………………..…....14
第三章 材料方法……………………………………………………….16
一、 有機茶園草生栽培之草生草管理…………………..……….16
(一)茶園地點…………………….…………………………….....16
(二)茶樹種植………………….………………………..…..…..16
(三)機械除草………………………..………………….…….…..17
(四)機械除草期間之草相變化…………………….…….18
二、 遮蔭處理對茶樹生長與茶菁主要品質之影響……….…......18
(一)茶園地點與茶樹種植…………………………………….….18
(二)遮蔭處理………………………………………...…….18
(三)茶園氣候資料……………………………………………......19
(四)茶樹生長調查項目…………………………………………..20
(五)茶菁成分分析……………………………………………......20
三、統計分析與設計分析…………………………………..24
第四章 結果與討論…………………………………………….25
一、 平地有機茶園機械除草下草生栽培之草相變遷………........25
(一)草生栽培草相變遷……………………………………..…....25
(二)茶園各種草生草出現時間………………………………..…28
(三)茶園草生草之資料庫……………………………………..…34
二、 遮蔭對茶樹生長之影響………………………….…..47
(一)遮蔭下的微氣候變化…………………………….……...47
(二)茶樹存活率………………………………………..….50
(三)茶樹農藝性狀..........................................................................56
三、 遮蔭栽培對茶菁品質之影響…………….…………………...70
(一)葉綠素……………………………………………………..…70
(二)茶胺酸……………………………………………………..…72
(三)咖啡因………………………………………………………..75
(四)多元酚……………………………………………………..…77
(五)兒茶素類………………………………………………..……79
1. 非酯型兒茶素…………………………………………….79
2. 酯型兒茶素………………………………...…….……….87
第五章 結論……………………………………………………………96
參考文獻………………………………………………………………..97


表目錄
表一、有機茶園中各種草生草出現的月份……………………………29
表二、2016年四品種茶樹存活率與氣候因子之相關係數……..…....53

圖目錄
圖一、有機茶園每月固定機械除草下之草相變化。括號內為各草種出 現頻度,每月平均割草次數為3-4次。……………………..26
圖二、遮蔭處理下(約40%、50%及80%)茶樹植冠上半部微氣候的改變,包含光強度、相對濕度、氣溫…………………………..48
圖三、茶樹四品種於不同程度遮蔭處理下的存活率。遮蔭處理包含控制組(約40%)、50%遮蔭及80%三種………………………....51
圖四、遮蔭處理期間,茶樹每月平均氣溫、總日照量、總降雨量、總蒸發量及相對溼度……………………………………………..52
圖五、茶樹二品種於不同程度遮蔭處理下株高的相對生長速率。..57
圖六、茶樹二品種於不同程度遮蔭處理下代表枝長的相對生長速率。
…………………………………………………………………..59
圖七、茶樹二品種於不同程度遮蔭處理下分枝數的相對生長速率。
…………………………………………………………………..61
圖八、茶樹二品種於不同程度遮蔭處理下代表枝上捲葉數的相對增加數目。……………………………………………………………63
圖九、茶樹二品種於不同程度遮蔭處理下代表枝上未熟葉數的相對增加數目。……………………………………………………...…65
圖十、茶樹二品種於不同程度遮蔭處理下代表枝上成熟葉數的相對增加數目。………………………………………………………...67
圖十一、茶樹二品種於不同程度遮蔭處理下代表枝上芽數的相對增加數目。………………………………………………………...69
圖十二、茶樹四品種於不同程度遮蔭處理下的茶葉葉綠素含量。...71
圖十三、茶樹四品種於不同程度遮蔭處理下的茶葉茶胺酸含量。...73
圖十四、茶樹四品種於不同程度遮蔭處理下的茶葉咖啡因含量。…76
圖十五、茶樹四品種於不同程度遮蔭處理下的茶葉多元酚含量。…78
圖十八、茶樹四品種於不同程度遮蔭處理下的茶葉沒食子兒茶素含量。………………………………………………...………….80
圖十六、茶樹四品種於不同程度遮蔭處理下的茶葉兒茶素含量。…82
圖十七、茶樹四品種於不同程度遮蔭處理下的茶葉表兒茶素含量。.84
圖十九、茶樹四品種於不同程度遮蔭處理下的茶葉表沒食子兒茶素含量。…………………………………………………………...86
圖二十、茶樹四品種於不同程度遮蔭處理下的茶葉兒茶素沒食子酸酯含量。…………………………………………………………88
圖二十一、茶樹四品種於不同程度遮蔭處理下的茶葉表兒茶素沒食子酸酯含量。………………………………………………….90
圖二十二、茶樹四品種於不同程度遮蔭處理下的茶葉沒食子兒茶素沒食子酸酯含量。………………………………………….…92
圖二十三、茶樹四品種於不同程度遮蔭處理下的茶葉表沒食子兒茶素沒食子酸酯含量。…………………………………………..94
參考文獻
王裕文。2000。培地茅(Vetiveria zizanioides)簡介。中華民國雜草學會會刊。21:59-63。
阮逸明。1995。茶。台灣農家要覽 農作篇(一)。再版。台北:財團法人豐年社。pp. 147-162。
吳亮宜、孫璐西。2004。茶與健康。科學發展月刊。行政院國家科學委員會。384:18-23。
林景和、洪阿田。2003。果園草生栽培。高雄區農業改良場。
林美華、莊岳峰、曾玫菁。2013。休耕農地活化-農地活起來,農業有未來 農政與農情。247:6-11。
施愛萍、張啟翔、石雷。2004。不同遮蔭水平下4個玉簪品種的生長性狀分析。植物研究。24:486-490。
洪詮斌、鄭皆達、黃晴曉、黃育珍。2008。山坡地潛在地滑區土地利用可行性研究-以臺中市大坑地區為例。水土保持學報。pp. 247-268.
張憲秋。1963。農業要覽 第七輯 特用作物 第三篇 茶葉。初版。臺灣省政府農林廳。台灣:台北。
張汶肇、吳建銘、吳昭慧。2010。果園草生栽培之管理及維護。果園草生栽培管理。台南區農業改良場技術專刊。149:72-75。
陳玄。1992。氣象因子對茶樹生長之影響。茶葉產製技術研討會專刊。台灣省茶業改良場。pp. 85-114。
陳英玲。2005。茶葉的保健功效。科學發展。391:66-73。
徐玲明、蔣慕琰。1999。台灣草坪雜草彩色圖鑑。農業藥物毒物試驗所。
楊秀珠。2007。整合管理在農業經營上之應用。茶樹整合管理。行政院農業委員會動植物防疫檢疫局編印。pp. 1-14。
連大進、黃山內、吳昭慧。2000。果園草生栽培。台南區農業專訊。33:4-7。
鄭混元、范宏杰。2005。遮蔭對野生茶樹生育及製茶品質之影響。臺灣茶業研究彙報。24:45-63。
蔡俊明。2007。茶樹品種及其特性。茶樹整合管理。行政院農業委員會動植物防疫檢疫局編印。pp. 15-17。
賴正南。2011。茶與咖啡多酚化學介紹。臺大農業推廣通訊雙月刊。88:8-10。
賴俊榮、何世華。2011。環境敏感區位考量下之土地利用規劃。水土保持學報 43:429-448。
蔣永正。2007。雜草之發生與管理。茶樹整合管理。楊秀珠。行政院農業委員會動植物防疫檢疫局編印。pp. 121-136。
Arab, L., W. Liu, and D. Elashoff. 2009. Green and black tea consumption and risk of stroke. Stroke. 40:786-1792.
Ashihara, H., W. W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559-566.
Ashrafuzzaman, M., M. R. Islam, M. R. Ismaail, S. M. Shahidullah, and M. M. Hanafi. 2009. Evaluation of six aromatic rice varieties for yield and yield contributing character. Int. J. Agric. Biol. 11:616-620.
Chang, K. 2015. World tea production and trade: Current and future development. A publication by the Food and Agricultural Organization of the United Nations, Rome. Available online at www. fao.org.
Chen, Q., S. W. Yu, X. M. Jiang, Y. Zhao, X. Y. Meng, and X. C. Wan. 2016. Effect of shade treatment in summer on the expression of genes related to theanine biosynthesis in tea plants (Camellia sinensis). Bull. Bot. Res. 36:216-223.
Deng, W. W., S. Ogita, and H. Ashihara. 2008. Biosynthesis of theanine (γ-ethylamino-L-glutamic acid) in seedlings of Camellia sinensis. Phytochemistry Lett. 1:115-119.
Deng, W. W., S. Wang, Q. Chen, Z. Z. Zhang, and X. Y. Hu. 2012. Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Physiol. Biochem. 56:35-40.
Deng, W. W., Y. Fei, S. Wang, X. C. Wan, Z. Z. Zhang, and X. Y. Hu. 2013. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regul. 71:295-299.
Farhoosh, R., G. A. Golmovahhed, and M. H. Khodaparast. 2007. Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L.). Food Chem. 100:231-236.
Franklin, K. A. and G. C. Whitelam. 2005. Phytochromes and shade- avoidance responses in plants. Ann. Bot. 96:169-175.
Gibbins, H. L. and G. H. Carpenter. 2012. Alternative mechanisms of astringency–what is the role of saliva? J. Texture Stud. 44: 364-375.
Haskell, C. F., D. O. Kennedy, A. L. Milne, K. A. Wesnes, and A. B. Scholey. 2008. The effects of L-theanine, caffeine and their combination on cognition and mood. Biol. Psychol. 77:113-122.
Hazarika, L. K., M. Bhuyan, and B. N. Hazarika. 2009. Insect pests of tea and their management. Annu. Rev. Entomol. 54:267-284.
Hodgson, J. M. 2008. Tea flavonoids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 17:288-290.
Hollman, P. C. H., and I. C. W. Arts. 2000. Flavonols, flavones and flavanols–nature, occurrence and dietary burden. J. Sci. Food Agric. 80:1081-1093.
Iso, H., C. Date, K. Wakai, M. Fukui, and A. Tamakoshi. 2006. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann. Intern. Med. 144:554-562.
Iwai, T., K. Tanonaka, R. Inoue, S. Kasahara, N. Kamo, and S. Takeo. 2002. Mitochondrial damage during ischemia determines post-ischemic contractile dysfunction in perfused rat heart. J. Mol. Cell. Cardiol. 34:725-738.
Joseph, M. H., and C. A. Marsden. 1986. Amino acids and small peptides. HPLC of small peptides. IRL Press, Oxford 13-27.
Juneja, L. R., D. C. Chu, T. Okubo, Y. Nagato, and H. Yokogoshi. 1999. L-theanine-a unique amino acid of green tea and its relaxation effect in humans. Food Sci. Technol. 10:199-204.
Kӓhkōnen, M. P., A. I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962.
Kaneko, S., K. Kumazawa, H. Masuda, A. Henze, and T. Hofmann. 2006. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 54:2688-2694.
Kimura, K., M. Ozeki, L. R. Juneja, and H. Ohira. 2007. L-Theanine reduces psychological and physiological stress responses. Biol. Psychol. 74:39-45.
Ku, K. M., J. N. Choi, J. Kim, J. K. Kim, L. G. Yoo, S. J. Lee, and C. H. Lee. 2009. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 58:418-426.
Kuriyama, S. 2008. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J. Nutr. 138:1548S-1553S.
Lea, P. J., and R. J. Ireland. 1999. Nitrogen metabolism in higher plants. Plant amino acids. Biochemistry Biotechnol. 1.
Lee, L. S., J. H. Choi, N. Son, S. H. Kim, J. D. Park, D. J. Jang, Y. Jeong, and H. J. Kim. 2013. Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J. Agric. Food Chem. 61:332-338.
Li, Y. H., W. Gu, and S. Ye. 2007. Expression and location of caffeine synthase in tea plants. Russ. J. Plant Physiol. 54:698-701.
Li, Y., S. Ogita, C. A. Keya, and H. Ashihara. 2008. Expression of caffeine biosynthesis genes in tea (Camellia sinensis). Z. Naturforsch. C Bio. Sci. 63:267-270.
Liang, H., Y. Liang, J. Dong, J. Lu, H. Xu, and H. Wang. 2007. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 101:1451-1456.
Liu, M., H. L. Tian, J. H. Wu, R. R. Cang, R. X. Wang, X. H. Qi, Q. Xu, and X. H. Chen. 2015. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Hortic. Res. 2:15011.
Matthews, R. B. and W. Stephens. 1998. Cuppa-Tea: A simulation model describing seasonal yield variation and potential production of tea. 1. shoot development and extension. Exp. Agric. 34:345-367.
Nakachi, K., S. Matsuyama, S. Miyake, M. Suganuma, and K. Imai. 2000. Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors. 13:49-54.
Oliveira, J., N. Mateus, and V. de Freitas. 2013. Flavanols: Catechins and Proanthocyanidins. Natural Products. Springer Berlin Heidelberg pp. 1753-1801.
Park, S. K., I. C. Jung, W. K. Lee, Y. S. Lee, H. K. Park, H. J. Go, K. Kim, N. K. Lim, J. T. Hong, S. Y. Ly, and S. S. Rho. 2011. A combination of green tea extract and l-theanine improves memory and attention in subjects with mild cognitive impairment: a double-blind placebo-controlled study. J. Med. food 14:334-343.
Perva-Uzunalić, A., Š. Ž. K. Mojca, W. Bernd, O. Frank, and G. Sabine. 2006. Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem. 96:597-605
Punyasiri, P. A. N., I. S. B. Abeysinghe, V. Kumar, D. Treutter, D. Duy, C. Gosch, S. Martens, G. Forkmann, and T. C. Fischer. 2004. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch. Biochem. Biophys. 431:22-30.
Rani, A., K. Singh, P. S. Ahuja, and S. Kumar. 2012. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205-210.
Saijo, R. 1980. Effect of shade treatment on biosynthesis of catechins in tea plants. Plant Cell Physiol. 21:989-998.
Saito, K., K. Furue, H. Kametani, and M. Ikeda. 2014. Roots of hydroponically grown tea (Camellia sinensis) plants as a surce of a unique amino acid, theanine. Am. J. Exp. Agric. 4:125-129.
Sasaoka, K., M. Kito, and Y. Onishi. 1965. Some properties of the theanine synthesizing enzyme in tea seedlings. Agric. Biol. Chem. 29:984-988.
Sato, Y., H. Nakatsuka, T. Watanabe, S. Hisamichi, H. Shimizu, S. Fujisaku, Y. Ichinowatari, Y. Ida, S. Suda, K. Kato, and M. Ikeda. 1989. Possible contribution of green tea drinking habits to the prevention of stroke. Tohoku J. Exp. Med. 157:337-343.
Shi, C. Y., H. Yang, C. L. Wei, O. Yu, Z. Z. Zhang, C. J. Jiang, J. Sun, Y. Y. Li, Q. Chen, T. Xia, and X. C. Wan. 2011. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131.
Singh, K., A. Rani, S. Kumar, P. Sood, M. Mahajan, B. Singh, S. K. Yadav, and P. S. Ahuja. 2008. An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiol. 28:1349-1356.
Singh, K., S. Kumar, A. Rani, A. Gulati, and P. S. Ahuja. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomics 9:125-134.
Syu, K. Y., C. L. Lin, H. C. Huang, and J. K. Lin. 2008. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography. J. Agric. Food Chem. 56:7637-7643.
Takeo, T. 1974. L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry 13:1401-1406.
Vanbreda, S. V., C. F. Vandermerwe, H. Robbertse, and Z. Apostolides. 2013. Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves. Planta 237:849-858.
Vuong, Q. V., M. C. Bowyer, and P. D. Roach. 2011. L‐Theanine: properties, synthesis and isolation from tea. J. Sci. Food Agric. 91:1931-1939.
Vyas, D. and S. Kumar. 2005. Tea [Camellia sinensis (L.) O. Kuntze] clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol. Biochem. 43:383-388.
Wang, D., E. Kurasawa, Y. Yamaguchi, K. Kubota, and A. Kobayashi. 2001. Analysis of glycosidically bound aroma precursors in tea leaves. 2. changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J. Agric. food Chem. 49:1900-1903.
Wang, Y., L. Gao, Y. Shan, Y. Liu, Y. Tian, and T. Xia. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 141:7-16.
Wei, K., L. Wang, C. Zhang, L. Wu, H. Li, F. Zhang, and H. Cheng. 2015. Transcriptome analysis reveals key flavonoid 3’-hydroxylase and flavonoid 3’, 5’-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis. PloS. One. 10:e0137925.
Xiao, R. L., J. R. Wang., W. X. Shan, X. H. Li., T. Q. Song, and Y. Tang. 2007. Tea plantation environment and quality under different degrees of shadiando-Agric. 6:6-11.
Yang, Z. Y., E. Kobayashi, T. Katsuno, T. Asanuma, T. Fujimori, T. Ishikawa, M. Tomomura, K. Mochizuki, T. Watase, Y. Nakamura, and N. Watanabe. 2012. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chem. 135:2268-2276.
Yang, Z. Y., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Res. Int. 53:585-599.
Yokogoshi, H., M. Kobayashi, and M. T. Mochizuki. 2002. Effect of theanine, gammaglutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem. Res. 23:667-673.
Zhang, Q., Y. Shi, L. Ma, X. Yi, and J. Ruan. 2014. Metabolomic analysis using ultra-performance liquid chromatography- quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PloS One. 9:e112572.
Zhang, W. J., Y. R. Liang, F. Z. Zhang, C. S. Chen, Y. G. Zhang, R. B. Chen, and B. Q. Weng. 2004. Effects on the yield and quality of oolong tea by covering with shading net. J. Tea Sci. 24:276-282.
Zheng, X. Q., J. Jin, H. Chen, Y. Y. Du, J. H. Ye, J. L. Lu, C Lin, J. J. Dong, Q. L. Sun, L. Y. Wu, and Y. R. Liang. 2008. Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L) O. Kuntze). Afr. J. Biotechnol. 7:3283-3287.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔