跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:河世詠
研究生(外文):Herta Novalina Sipayung
論文名稱:遮蔭對茶樹生長和抗氧化能力的效果
論文名稱(外文):Shading effect on tea plants (Camellia sinensis L.) growth and antioxidant activity
指導教授:陳建德陳建德引用關係
口試委員:洪傳揚李澤民許奕婷
口試日期:2017-01-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:45
中文關鍵詞:茶葉生長產量遮蔭抗氧化力
外文關鍵詞:TeaGrowthYieldShadeAntioxidant capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
茶樹是一種多年生作物,具有在低溫條件下的山區生長之特點,並且很少種植在平原地區。本研究的目的是探討遮蔭對平原地區茶樹生長的影響以及抗氧化能力.本研究選用台茶12號 (金萱) 為試驗材料。種植於台灣台中市中興大學實驗田兩年(2013-2015年)。以遮陰與非遮陰做處理。觀測茶苗去頂後30天和45天抽稍的生長。結果表示,幼苗存活率、株高和抽稍數在陰影中高於非陰影。在(2015年7月)和春季(2016年3月),茶樹去頂後的結果顯示茶樹的株高在陰影中較高,在夏季沒有不同的枝條數和葉片數。春季的結果表示,茶樹株高在無陰影的處理顯著較高,但抽稍數與葉片數沒有顯著差異。在夏季,冬季和春季,遮蔭對切割後茶芽生長的影響是不同的。在DPPH試驗中,遮陰處理顯示出比非遮陰處理有更高的抗氧化能力。因此,可以得出結論,於平原地區,遮蔭處理對於茶苗的生長更好。然而,遮蔭處理對茶苗去頂後生長的影響取決於季節。
Tea plant is one of perennial industry crop that has characteristics of growing in mountain areas with low-temperature condition, and seldom planted in plain area. The purpose of this research was testing the effect of shading on the growth of tea plant in plain area, and on the antioxidant capacity. This research chose cultivar of Taiwan Tea No. 12 as testing materials. Tea was planting at experimental field in National Chung-Hsing University, Taichung, Taiwan for two years (2013-2015).Treatments included shade and non-shade. The growth of tea shoots were monitored after 30 days and 45 days of tea cutting. The results showed that seedling survival rate, plant height and branch number were higher in shade than in non-shade. During summer (July 2015) and spring (March 2016), results of after tea cutting showed that the length of tea shoot was higher in shade significantly and no different in shoot number and leaf number at summer season. The results at spring showed that the length of tea shoot was higher in non-shade significantly and no different in shoot number and leaf number. The effects of shade on the growth of tea shoots after cutting were different between summer, winter and spring season. In DPPH testing shade treatment showed higher antioxidant capacity than non-shade treatment. Therefore, it might be concluded that shade treatment is better for the growth of tea seedling in a plain area. However, the effects of shade on shoot growth after cutting depends on the season.
Acknowledgment i
Abstract iii
List of Figure vii
Chapter 1: Introduction 1
1.1 Background and motivation 1
1.2 Study objectives 1
Chapter 2: Literature reviews 2
2.1 Altitude for the tea growing 2
2.2 The Effect of shade 2
2.3 The Effect of light 3
2.4 Antioxidant activity in tea leaves 4
2.5 Various growing seasons 4
Chapter 3: Materials and methods 7
3.1 Experimental site 7
3.2 Tea leaf collection for antioxidant analysis 7
3.3 Parameters of agronomic traits after 2 years planting at tea field 10
3.3.1 The seedling survival rate (%) 10
3.3.2 The plant height (cm) 10
3.3.3 The branch number (Number) 10
3.4 Parameters of agronomic trait after 30 days and 45 days cutting 10
3.4.1 The length of shoot (cm) 10
3.4.2 Total new leaf number / plant 10
3.4.3 The Shoot number (Number) 11
3.5 Preparation of tea brewing 11
3.6 Making Black Tea 14
3.7 Leaf preparation 14
3.8 Antioxidant capacity by 2, 2 –Diphenyl -1- picrylhydrazyl (DPPH) radical assay
17
3.9 Antioxidant capacity by ferric reducing antioxidant power (FRAP) assay 19
3.10 Tea leaves temperature measurement 19
3.11 Spectrum color of black tea 19
3.12 Statistical Analysis 19
Chapter 4: Results 20
4.1 Result 20
4.1.1 The seedling survival rate (%) 20
4.1.2 The Plant height (cm) 20
4.1.3 The branch number (Number) 20
4.1.4 Tea shoot emerge after cutting in summer season 24
a. The length of shoot (cm) 24
b. Total new leaf/ plant 24
c. The shoot number (Number) 24
4.1.5 Winter season 27
4.1.6 Spring season 28
4.1.7 The leaf temperature 31
4.1.8 Investigation of leaf temperature 31
4.1.9 Spectrum color of black tea 31
4.1.10 Percentage radical scavenging DPPH in fresh tea leaves 36
4.1.11 Percentage radical scavenging DPPH of black tea 36
4.1.12 FRAP Assay 36
Chapter 5: Discussion 40
5.1 Discussion 40
Chapter 6: Conclusion 43
6.1 Conclusion 43
6.2 Further work and suggestion 43
References 44
Bhatia, I. S., and Ullah, M. R. 1968. Qualitative and quantitative study of the
polyphenols of different plant parts and some cultivated varieties of tea plant.
The Science of Food and Agriculture, 19, 535–542.
Central Weather Bureau Taiwan. 2017. Temperature of Central Weather Bureau Taiwan 2015 and 2016. http://e-service.cwb.gov.tw/HistoryDataQuery/YearDataController. (January, 01st 2017).
Chen, C. N., Ling, C.M., Lai, J. R., Tsai, Y.J., Tsay, J.S., Lin, J.K. 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effect on rat neurosphere adhesion and migration. Agriculture and Food chemistry, 51, 7495-7503.
Chen, J., Zhao, M. Liu, J. Cai, J. Liu. 2008. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Pharmaceutical and Biomedical Analysis, 46 (13), 568–573.
Chen, Y., Jiang, Y., Duan, J., Shi, J., Xue, S., Kakuda, Y. 2010. Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea
(Camellia sinensis) at various growing altitudes and seasons. Food Chemistry 119, 648–652.
Crozier , A. , Yokota , T. , Jaganath , I.B. , Marks , S.C. , Saltmarsh , M. and Clifford , M.N. 2006. Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components .In Plant Secondary Metabolites. Edited by Crozier, A.,Clifford , M.N. and Ashihara , H. pp. 208 – 302 . Blackwell, Oxford.
Deng, W.W and Ashihara, H. 2010. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedling. Plant & Cell Physiology. 51, 2105-2118.
Deng, W.W., Fei, Y., Wang, S., Wan, X.C., Zhang, Z.Z., and Hu, X.Y. 2013. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regulation. 71,295-299.
Fernando,C.D and Soysa, P.2015. Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutrition Journal, 14:74.
Gulati, A., and Ravindranath, S. D.1996. Seasonal Variations in Quality of Kangra Tea
(Camellia sinensis (L), Kuntze) in Himachal Pradesh. The Science of
Food and Agriculture, 71, 231–236.
Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S., and Mukhtar, H.2001. Inhibition of
prostate carcinogenesis in TRAMP mice by oral infusion of green tea
polyphenols. Proceedings of the National Academy of Sciences, 98(18),
10350–10355.
Hilton, P. J., and Palmer-Jones, R. 1973. Relationship between flavonol composition
of fresh tea shoots and theaflavins content of manufactured tea. Science and Food Agriculture, 24, 813–818.
Hirai, M., Yoshikoshi, H., Kitano, M., Wakimizu, K., Sakaida, T., Yoshioka, T. 2008. Production of value-added crop of green tea in summer under the shade screen net: Canopy microenvironments. Acta Horticulturae, 797,411–417.
Huang, S. 19991. A study on the ecological climates of some famous tea growing areas in high mountainous region of China. Chinese Geographical Science. Vol. 1 No.2 pp.121-128
Janendra, W.A., Costal, M.D., Janaki Mohotti, A., Wijeratne, M.A., 2007. Ecophysiology of tea. Brazilian Journal Plant Physiology. 19, 299–332.
Jiang, X.,Liu Y., Li, W.,Zhao, L., Meng, F.,Wang, Y., Tan, H., Yang, H.,Wei, C.,Wan, X., Gao, L., and Xia, T. 2013. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant (Camellia sinensis). Plos One. Vol. 8. Issue 4. e62315.
Ku, K.M., Choi, J.N., Kim, J., Kim, J.K., Yoo, L.G., Lee, S.J., Hong, Y.S., Lee, C.H., 2010. Metabolomics analysis reveals the compositional differences of shade grown
tea (Camellia sinensis L.). Agriculture and Food Chemistry. 58, 418–426.
Lin, Y.L., Juan, I.M., Chen, Y. L., Liang, Y C., and Lin, J K. 1996. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. Agriculture and Food Chemistry. 44, 1387−1394.
Lobell, D.B., Schlenker W, Costa-Roberts J. 2011.Climate trends and global crop
production since 1980. Science 333: 616–620.
Mariya, J. K. M., Sasikumar, R., Balasubramanian, M., Saravanan, M., and Raj Kumar, R. 2003. Influence of light on catechin biosynthesis in tea. Tea, 24, 80–86.
Mohotti, A.J and Lawlor, D.W., 2002. Diurnal variation of photosynthesis and photo inhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Experimental Botany. 53, 313–322.
Nathanson, J .A. 1984. Caffeine and related methylxanthines: possible naturally occurring pesticides. Science. 226, 184-187.
Obanda, M., Owuor, P.O., Mang’oka, R., Kavoi, M.M. 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chemistry 85.
163–173.
Ohta, K., and Harada, K.1996. Studies on environmental conditions of tea plants
cultivated by hydroponics: Effects of irradiation and night temperature on free
amino acids contents and plant growth. Environmental Contamination and
Biology, 34, 179–190.
Owuor, P. O., Obanda, M., Apostolides, Z., Wright, L. P., Nyirenda, H. E., and Mphangwe,N. I. K. 2006. The relationship between the chemical plain black tea quality parameters and black tea colour, brightness and sensory evaluation. Food Chemistry, 97, 644–653.
Porter J.R and Semenov M.A. 2005. Crop responses to climatic variation. Philos
Trans R Soc Lond B Biol Sci. 360: 2021–2035.
Premkumar, R., Ponmurugan, P., and Manian, S. 2008. Growth and photosynthetic
and biochemical responses of tea cultivars to blister blight infection.
Photosynthetica, 46(1), 135–138.
Saijo, R. 1980. Effect of shade treatment on biosynthesis of catechins in tea plants.
Plant Cell Physiology, 21, 989–998.
Suzuki, T., and Waller, G. R. 1985. Effects of light on the production and degradation
of caffeine in Camellia sinensis L. seedlings. Plant Cell Physiology, 26, 765–768.
Song, R., Kelman, D., Johns, K.L., and Wright, A.D. 2012. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis L.) grown in Hawaii. Food Chemistry, 133, 707-714.
Wang, Y., Gao, L.,Shan, Y., Liu, Y., Tian, Y., Xia, T. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis L.). Science Horticulture.141, 7-16.
Wilson, K C., 1999. Coffee, cocoa, and tea. CABI Publishing. United Kingdom. Pp. 178-180
Yamamoto, T., Juneja, L. R., Chen, D.C., and Kim, M. 1997. Chemistry and applications of green tea. Boca Raton. FL.CRC. Press.
Yao, L., Jiang, Y., Datta, N., Singanusong, R., Liu, X., Duan, J., et al. 2004. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chemistry, 84, 253–263.
Yao, L., Caffin, N., D’Arcy, B., Jiang, Y., Shi, J., Singanusong, R., et al. 2005. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). Agricultural and Food Chemistry, 53(16), 6477–6483.
Zamora, A.J., Christina, D.A and Jose A.R-H. 2016. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chemistry, 199, 339-346.
Zuo, Y., Chen, H., and Deng, Y. 2002. Simultaneous determination of catechins caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta, 57, 307–316.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊