跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許瀞心
研究生(外文):Ching-Hsin Hsu
論文名稱:水稻幼苗於低溫環境下氧化逆境之研究
論文名稱(外文):Studies on oxidative stress in rice seedlings under low temperature
指導教授:許奕婷
口試委員:陳宗禮黃文理羅正宗蔡育彰
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:水稻幼苗低溫氧化逆境活化氧族抗氧化物抗氧化酵素
外文關鍵詞:riceseedlingslow temperaturecoldoxidative stressROSantioxidantantioxidant enzymes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
在台灣,一期作水稻 (Oryza sativa L.) 於早期生長階段易受低溫影響而降低其存活率、阻礙光合作用進行、抑制生長、能量和脂質代謝及蛋白質的合成,進而導致後期產量減少。本論文擬探討8個水稻品種幼苗於低溫環境下地上部與根部之生理反應現象,以目前台灣8個水稻領先品種,分別為台東30號 (Taitung 30, TT30)、台南11號 (Tainan 11, TN11)、台農71號 (Tainung 71, TNG71)、高雄139 (Kaohsiung 139, KH139)、台稉9號 (Taikeng 9, TK9)、台稉14號 (Taikeng 14, TK14)、台稉16號 (Taikeng 16, TK16) 及台中秈10號 (Taichung sen 10, TCS10) 為試驗材料。以15℃低溫處理不同品種水稻幼苗4天,發現8個品種之地上部與根部生長明顯受抑制,鮮重、乾重與長度皆顯著降低,且根部MDA 含量有提高之趨勢,但TNG 71與TK14與控制組相比則無顯著差異;測量根部過氧化氫 H2O2含量也與MDA趨勢相同,並由相關分析也發現H2O2及MDA含量與水稻幼苗根部之鮮重、乾重和長度呈現負相關性,表示水稻於低溫逆境下會受氧化逆境影響,使得水稻生長受到抑制,而TNG 71與TK14則反之,說明應較能抵禦逆境之發生。結果也發現TNG 71、TK14與TCS10的ASC及GSH含量變動不明顯,且SOD、APX和GR活性上升幅度也較少,其他品種則為因應氧化逆境使抗氧化系統皆有顯著改變,此現象可能與TNG 71及TK14累積ROS較少有關,然而TCS10雖有氧化逆境發生,但其清除ROS能力較差,因此受低溫影響更為嚴重。由上述結果得知稉稻中TNG 71與TK14應為對低溫較具耐性之品種,而TCS10可能因屬於秈稻系統,所以相較其他品種而言對低溫抵抗能力更為不佳。
In Taiwan, low temperature will inhibit rice growth, photosynthesis, protein synthsis, energy and lipid metabolism, and cause lower survival rate at early stage. Because of these reasons, low temperature may reduce production in Taiwan rice. We use rice (Oryza sative L.) seedlings including Taitung 30, Tainan 11, Tainung 71, Kaohsiung 139, Taikeng 9, Taikeng 14, Taikeng 16 and Taichung sen 10 to investigate how affects of different cultivars rice under low temperature. After treated 15℃ for 4 days, shoot and root fresh weight, dry weight, shoot height and root length are all reduced in eight cultivars of rice seedlings. The MDA and H2O2 content are also increased in roots after cold treatment, but TNG 71 and TK14 are not affected significantly. And MDA and H2O2 content are negative correlation between root fresh weight, dry weight and length by correlation analysis. This indicates low temperature will induce oxidative stress among all cultivars except TNG 71 and TK14. The results also reveal that the ASC and GSH content are not influenced onTNG 71, TK14 and TCS10 seedling roots, and SOD, APX, GR activities are only increased slightly. But the antioxidantive system of other cultivars of rice have strong reponse to oxidative stress. This possibly related to less accumulation of ROS in TNG 71 and TK14. However, severe oxidative stress was observed in TCS10 due to its poor ROS scavenging ability. The study suggests that TCS10 will be damaged the most among these eight rice cultivars . According to this finding, we know japonica rice TNG71 and TK14 have better tolerance of chilling. And because of TCS10 may belongs to indica rice system, so its ability to resistance chilling is worse than other rice varietis.
目錄
中文摘要----------------------------------------------------------------------------i
英文摘要------------------------------------------------------------------------- iii
目錄------------------------------------------------------------------------------v
圖表目錄-------------------------------------------------------------------------vii
縮寫字對照-------------------------------------------------------------------- ix
壹、前言-----------------------------------------------------------------------------1
貳、前人研究-----------------------------------------------------------------------3
一、 低溫對台灣糧食作物造成之經濟損失------------------------3
二、 低溫對作物生長之影響------------------------------------------4
(一) 低溫對水稻生長之影響------------------------------5
(二) 低溫對水稻光合作用之影響----------------------------6
(三) 低溫對水稻養分吸收之影響----------------------------7
(四) 低溫對水稻花穗及產量之影響-------------------------8
三、 低溫伴隨氧化逆境的發生---------------------------------------9
(一) 植物產生ROS的來源------------------------------------9
(二) 植物清除ROS之機制-----------------------------------10
(三) 低溫對水稻氧化逆境之影響---------------------------15
四、 低溫耐受性與低溫逆境訊號之關聯-------------------------17
(一) 低溫耐受性對水稻蛋白質體與基因表現之影響--17
(二) 冷馴化提升水稻幼苗之低溫耐受性----------------19
(三) ROS為提高低溫耐受性之因子----------------------19
(四) ROS調節低溫逆境訊號-------------------------------21
參、論文之研究目的與試驗架構---------------------------------------------23
肆、材料與方法------------------------------------------------------------------24
伍、結果---------------------------------------------------------------------------35
一、 低溫對水稻幼苗生長之影響---------------------------------------35
二、 低溫伴隨氧化逆境之發生------------------------------------------43
三、 低溫下水稻幼苗抗氧化系統之變化------------------------------50
四、TNG71、TK14、KH139及TCS10幼苗於低溫經回溫後H2O2
與MDA含量之改變-------------------------------------------------70
陸、討論---------------------------------------------------------------------------74
柒、參考文獻---------------------------------------------------------------------98
丁文彥。2012。極端溫度對水稻生育的影響。臺東區農業專訊 82:16-18。
行政院農委會動植物防疫檢疫局。2007。寒害。植物保護圖鑑系列。pp. 395-398。
何佳勳、楊純明、蕭巧玲、賴明信。2012。抽穗至收穫期間氣象變因對水稻米質 (TNG 71) 之影響。台灣農業研究 61 : 222-240。
吳文欽、林茂森。2008。臺灣水稻品種之譜系分析:I. 日本引種間之親緣關係。作物、環境與生物資訊 5 : 248-257。
吳美慧。2013。不同品種水稻幼苗鎘耐性之研究。碩士論文。台中:國立中興大學農藝學系研究所。
李芳琳。2015。Ascorbate peroxidase 8, glutathione reductase 2 及 glutathione reductase 3在離層酸誘導幼苗老化扮演之角色。碩士論文。台中:國立中興大學農藝學系研究所。
李超運、劉瑋婷、丁全孝、鄭明欽、陳正昌、曾東海、劉大江。1998。水稻新品種台梗 16 號之育成及其特性。花蓮區研究彙報 16 : 1-21。
李超運。2000。水稻冷害原因及對策。花蓮區農業專訊 34:12-14。
李祿豐。1999。氣象因素對宜蘭地區水稻產量之影響。花蓮區研究彙 報 17 : 93-102。
林芳洲、林孟輝。2000。水稻耐寒性檢定試驗。桃園區農業改良場研究彙報 42 : 13-21。
林再發。1980。臺中秈十號之育成。臺中區農業良場研究彙報 16 : 1-21。
林再發。1990。第一、二期作水稻產量構成要素對產量影響分析。臺中區農業改良場研究彙報 26 : 17-23。
林再發、黃富美。1992。第二期作水稻品種台中秈10 號之移植期對產量及米質之影響。臺中區農業改良場研究彙報 34 : 27-33。
林安秋。1996。作物之光合作用。台灣商務印書館。
林孟靜、張學琨。1993。東北季風對早晚熟稜稻生育及產量之影響。桃園區農業改良場研究報告 15 : 1-9。
林國清。1997。水稻新品種台南11 號之育成。台南區農業改良場研究彙報 45 : 1-25。
花蓮區農業改良場。2010。主要栽培品種對於低溫之耐受性比較。水稻低溫冷害不稔實災害辨識手冊,pp. 7-8。
姚銘輝、陳守泓。2009。氣候變遷下水稻生長及產量之衝擊評估。行政院農委會農業試驗所農業工程組。6: 141-156。
范宗宸。2009。品種研發創新機制與成果評估。生物產業科技管理叢刊 1 : 85 – 118。
張素貞。2001。台稉14號及台稉16號---新推薦的良質米品種。苗栗區農業專訊 第16期。
張致盛、蘇宗振、楊嘉凌、李健捀、許志聖。2013。良質米團隊研發與整合成果。良質米產業發展研討會專輯。pp. 11-23。
許志聖、楊嘉凌。2004。良質米的栽培管理方法。臺中區農業專訊 46 : 4-10。
許志聖、楊嘉凌。2009。水稻台中秈10號。臺中區農業改良場歷年育成品種專輯。pp. 65-67。
陳素娥、林孟輝。2007。水稻優良品種介紹。桃園區農業專訊 62 : 12-18。
陳隆澤、陳一心、鄭清煥、林芳洲、黃振增、陳素娥、楊嘉凌、林金樹、吳文政、林國清、陳紹崇、邱明德、古仁允、黃秋蘭、江瑞拱、潘昶儒。2000。89年作物改良年報 : 191-232。
曾東海、鄧耀宗。1982。水稻秧苗耐寒性之研究Ⅰ. 水稻品種(系) 及苗齡對低溫之反應。中華農業研究 31 : 255 – 264.
黃佳興、吳文欽、潘昶儒、林泰佑、宣大平。2015。花蓮地區不同期作之氣象因素對水稻產量之影響。花蓮區農業改良場研究彙報33 : 1-11。
黃瓊瑤、游勝鋒。2008。台灣糧食供需狀況與確保台灣糧食安全之政策措施。行政院農業委員會 農政與農情 第196期。
楊嘉凌、許愛娜、許志聖。2004。良質米推薦品種的特性。臺中區農業專訊 46 : 11-18。
楊嘉凌、鄭佳綺、賴明信、吳永培、楊志維、張素貞、羅正宗、吳志文、丁文彥、宣大平。2013。良質米育種的演變與成果。良質米產業發展研討會專輯。pp. 37-52。
臺中區農業改良場。2000。臺農71 號育成經過。89年稻作改良年報:1-32。
Achard, P., F. Gong, S. Cheminant, M. Alioua, P. Hedden, and P. Genschik. 2008. The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20 : 2117–2129.
Aghaee, A., F. Moradi, H. Zare-Maivan, F. Zarinkamar, H. Pour Irandoost, and P. Sharifi. 2011. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr. J. Biotechnol.10 : 7617-7621.
Agrawal, G.K. and R. Rakwal. 2011. Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 11 : 1630-1649.
Alvarez, M. E., R. I. Pennell, P. J. Meijer, A. Ishikawa, R. A. Dixon, and C. Lamb. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92 : 773-784.
Antikainen, M., M. Griffith, J. Zhang, W. C. Hon, D. S. C. Yang, and K. Pihakaski-Maunsbach. 1996. Lmmunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol. 110 : 845-857.
Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 : 373-399.
Arora, A., R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82 : 1227-1238.
Aslund, F. and J. Beckwith. 1999. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96 : 751-753.
Bailly, C. A. Benamar, F. Corbineau, and D. Come. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 97 : 104-110.
Barnes, J. D., Y. Zheng, and T. M. Lyons. 2002. “Plant resistance to ozone: the role of ascorbate,” in Air Pollution and Plant Biotechnology. K. Omasa, H. Saji, S. Youssefian, and N. Kondo, Eds. Springer, Tokyo, Japan, 235-254.
Badea, C. and S. K. Basu. 2009. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics 2 : 78-84.
Baruah, A. R., N. Ishigo-Oka, M. Adachi, Y. Oguma, Y. Tokizono, K. Onishi, and Y. Sano. 2009. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica165: 459-470.
Bertin, P., J. M. Kinet, and J. Bouharmont. 1996. Evaluation of chilling sensitivity in different rice varieties . Relationship between screening procedures applied during germination and vegetative growth. Euphytica 89 : 201-210.
Bhattacharjee, S. 2013. Heat and chilling induced disruption of redox
homeostasis and its regulation by hydrogen peroxide in germinating
rice seeds (Oryza sativa L., Cultivar Ratna). Physiol. Mol. Biol.
Plants 19 : 199-207.
Bipfubusa, M., S. Rocher, A. Bertrand, Y. Castonguay, and J. Renaut. 2016. Dataset of protein changes induced by cold acclimation in red clover (Trifolium pratense L.) populations recurrently selected for improved freezing tolerance. Data Brief. 8 : 570-574.
Bowler, C., M. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43 : 83-116.
Bonnecarrere, V., O. Borsani, P. Diaz, F. Capdevielle, P. Blanco, and J.
Monza. 2011. Response to photoxidative stress induced by cold in
japonica rice is genotype dependent. Plant Sci. 180 : 726-732.
Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Bio. 72: 248-254.
Burden, J., R. B. H. Wills, K. Smith, A. Toet, and A. Shepherd. 1989. Prevention of postharvest food losses: fruits, vegetables and root crops, a training manual. FAO training series, (17/2).
Busch, F. 2008. Photostasis and cold acclimation : sensing low temoerature through photosynthesis. In “Photosynthesis in the light of climate change”. 31-64.
Burton , R.A., M.J. Gidley, and G.B. Fincher. 2010. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6 : 724-732.
Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98 : 1222-1227.
Campos, P. S., V. Quartin, J. C. Ramalho, and M. A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160 : 283-292.
Carey, A. L. 2016. Chloroplastic protein IOJAP is important for coldacclimation in arabidopsis thaliana. University of Tennessee, Knoxville.
Ceron-Garcia, A., I. Vargas-Arispuro, E. Aispuro-Hernandez, and M. A. Martinez-Tellez. 2012. Oligoglucan Elicitor Effects during Plant Oxidative Stress. “In Cell Metabolism-Cell Homeostasis and Stress Response”. 1-12.
Cheng, C., K. Y. Yun, H.W Ressom, B. Mohanty, V. B Bajic, Y. Jia, S.
Joong, and B. Reyes. 2007. An early response regulatory cluster
induced by low temperature and hydrogen peroxide in seedlings of
chilling-tolerant japonica rice. BMC Genomics 8 : 175-192.
Choudhary, M., U. K. Jetley, M. A. Khan, S. Zutshi, and T. Fatma. 2007. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotox. Environ. Safe 66(2) : 204-209.
Chalapathi- Rao, A. S. V., and A. R. Reddy. 2008. Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer. The Netherlands. 111-147.
Chawade, A., A. Lindlöf, B. Olsson, and O. Olsson. 2013. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi. Plos One 8 : e81729.
Conklin, P. L. and C. Barth. 2004. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ. 27 : 959-970.
Cui, S., F. Huang, J. Wang, X. Ma, Y. Cheng, and J. Liu. 2005. A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5 : 3162-3172.
Davey, M. W., M. V. Montagu, D. Inzé, M. Sanmartin, A. Kanellis, N. Smirnoff, I. J. J. Benzie, J. J. Strain, D. Favell, and J. Fletcher. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr. 80 : 825-860.
Dashtmian, P. F., M. K. Hosseini, and M. Esfahani. 2014. Alleviating harmful effects of chilling stress on rice seedling via application of spermidine as seed priming factor. Afr. J. Agric. Res. 9 : 1412-1418.
Depuydt , S., S. V. Praet, H. Nelissen, B. Vanholme, and D. Vereecke. 2016. How plant hormones and their interactions affect cell growth. Mocular cell biology of growth and differentiation of plant cell. 174-195.
Dhindsa, R. S., P. Plumb-Dhindsa, and T. A. Thorpe. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32 : 93-101.
Diaz-Vivancos, P., M. Faize, G. Barba-Espin, L. Faize, C. Petri, J. A. Hernández, and L. Burgos. 2013. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol. J. 11 : 976-985.
Ding, S., R. Jiang, Q. Lu, X. Wen, C. Lu. 2016. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta 1857 : 665-677.
Dodd, G. L. and L. A. Donovan. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot. 86 : 1146-1153.
Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 : 70-77.
Farrell, T. C., K. M. Fox, R. L. Williams, S. Fukai, and L. G. Lewin. 2005. Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust. J. Agr. Res. 57 : 89-100.
Faize. M., L. Burgos, L. Faize, A. Piqueras, E. Nicolas, G. Barba-Espin, M. J. Clemente-Moreno, R. Alcobendas, T. Artlip, and J. A. Hernandez. 2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62 : 2599-2613.
Fick, G. N. and C. O. Qualset. 1975. Genetic control of endosperm amylase activity and gibberellic acid responses in standard-height and short-statured wheats. Proc. Nat. Acad. Sci. USA. 72 : 892-895.
Foster, J. G., and J. L. Hess. 1980. Superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66: 482-487.
Foyer, C.H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92 : 696-717.
Foyer, C.H., N. Souriau, S. Perret, M. Lelandais, K. J. Kunert, C. Pruvost, and L. Jouanin. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109 : 1047-1 057.
Gao, Q. and L. Zhang. 2008. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of arabidopsis thaliana. J. Plant Physiol. 165 : 138-148.
Gammulla, C. G., D. Pascovici, B. J. Atwell, and P. A. Haynes. 2010. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high and low temperature stress. Proteomics 10 : 3001-3019.
Gammulla, C. G., D. Pascovici, B. J. Atwell, and P. A. Haynes. 2011. Differential proteomic response of rice (Oryza sativa) leaves exposed to high-and low-temperature stress. Proteomics 11 : 2839-2850.
Gou, Z., W. Ou, S. Lu, and Q. Zhong. 2006. Differential responses of
antioxidative system to chilling and drought in four rice cultivars
differing in sensitivity. Plant Physiol. Bioch. 44 : 828-836.
Guy, C. L., J. L. A. Huber, and S. C. Huber. 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol. 100 : 502-508.
Guan, Z. Q., T. Y. Chai, Y. X. Zhang, J. Xu, and W. Wei. 2009. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76: 623-630.
Hahn, M. and V. Walbot. 1989. Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol. 91 : 930-938.
Hara, M., S. Terashima, T. Fukaya, and T. Kuboi. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217 : 290-298.
Hasanuzzaman , M., K. Nahar, and M. Fujita. 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants. In“ Abiotic Stress - Plant Responses and Applications in Agriculture”. 170-205.
Health, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
Hernhdez, J. A., E. Olmos, F.J. Corpas, F. Sevilla, and L.A. de1 Rio. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105 : 151-167.
Hobbie, S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66 : 503-522.
Horemans, N., C. H. Foyer, and H. Asard. 2000. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5 : 263-267.
Hurry, V. M., A. Strand, M. Tobiaeson, P. Gardestrom, and G. Oquist. 1995. Cold hardening of spring and winter wheat and rape results in differential effects on crowth, carbon metabolism, and carbohydrate content. Plant Physiol. 109 : 697-706.
Hughes, M. A. and M. A. Dunn. 1996. The molecular biology of plant acclimation to low temperature. J. Exp. Bot. ol. 47 : 291-305.
Hung, S. H., C. W. Yu, and C. H. Lin. 2005. Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46: 1-10.
Hung, K. T., Y. T. Hsu, and C. H. Kao. 2006. Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol. Plant. 127:293-303.
Hung, K. and C. H. Kao. 2007. The participation of hydrogen peroxide in methyl jasmonate-induced NH4+ accumulation in rice leaves. J. Plant Physiol. 164 : 1469-1479.
Hung, K. T., D. G. Cheng, Y. T. Hsu, and C. H. Kao. 2008. Abscisic
acid-induced hydrogen peroxide is required for anthocyanin
accumulation in leaves of rice seedlings. J. Plant Physiol. 165 :
1280-1287.
Irigoyen, J. J., J. P. Dejuan, and M. Sanchez-Diaz. 1996. Drought enhances chilling tolerance in a chilling-sensitive maize (Zea mays) variety. New Phytol. 134 : 53-59.
Ito, Y., K. Katsura, K. Maruyama, T. Taji, M. Kobayashi, M. Seki, K. Shinozaki, and K. Y. Shinozaki. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47 : 141-153.
IRRI (International Rice Research Institute) (2009) Climate change-ready rice. (http://irri.org/our-science/bettervarieties/climate-ready-rice%23 Drought)
IRRI (International Rice Research Institute) (2009) Rice and climate change. ( http://irri.org/news/hot-topics/rice-and-climate-change)
IRRI (International Rice Research Institute) (2014) Climate-smart rice for Africa. (http://irri.org/our-work/research/better-rice-varieties/climate-
change-ready-rice)
Jackson, C., J. Dench, A. L. Moore, B. Halliwell, C. H. Foyer, and D. O. Hall. 1978. Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur. J. Biochem. 91: 339-344.
Jana, S., and M. A. Choudhuri. 1981. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat. Bot. 12: 345-354.
Jacobs, B.C. and C. J. Pearson. 1999. Growth, development and yield of rice in response to cold temperature. J. Agron. Crop Sci. 182 : 79-88.
Kato, M., and S. Shimizu. 1985. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26:1291-1301.
Knox, J.P. 2008. Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 11 : 308-313.
Kocsy, G. G. Szalai, A. Vágújfalvi, L. Stéhli, G. Orosz, and G. Galiba. 2000. Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210 : 295-301.
Kocsy, G., G. Galiba, and C. Brunold. 2001. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant. 113 : 158-164.
Koç, E., C. Işlek, and A. S. Üstün. 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. G. U. J. Sci. 23 : 1-6.
Kudoh, H. and K. Sonoike. 2002. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215 : 541-548.
Kuk, Y.I., J. S. Shin, N. R. Burgos, T. E. Hwang, O. Han, B. H. Cho, S.
Jung, and J. O. Guh. 2003. Antioxidative enzymes offer protection
from chilling damage in rice plants. Crop Sci. 43 : 2109-2117.
Law, M. Y., S. A. Charles, and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinaceu oleraceu) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem. J. 210: 899−903.
Lee, D. G., N. Ahsan, S. H. Lee, J. J. Lee, J. D. Bahk, K. Y. Kang, and B. H. Lee. 2009. Chilling stress-induced proteomic changes in rice roots. J. Plant Physiol. 166 : 1-11.
Lin, J. N. and C. H. Kao. 1998. Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Bot. Bull. Acad. Sinica 39 : 161-165.
Lindberg, S., A. Banas, and S. Stymne. 2005. Effects of different cultivation temperatures on plasma membrane ATPase activity and lipid composition of sugar beet roots. Plant Physiol. Bioch. 43 : 261-268.
Liu, X., Z. Zhang, J. Shuai, P. Wang, W. Shi, F. Tao, and Y. Chen. 2013. Impact of chilling injury and global warming on rice yield in Heilongjiang Province. J. Geogr. Sci. 23 : 85-97.
Lindlöf, A., A. Chawade, P. Sikora, and O. Olsson. 2015. Comparative transcriptomics of Sijung and Jumli Marshi rice during early chilling stress imply multiple protective mechanisms. Plos one 10 : e0125385.
Lin, J., Y. Zou, K. Cao, C. Ma, and Z. Chen. 2016. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei. J. Ind. Microbiol. Biotechnol. 43 : 703-711.
Liu, A., Z. Hu, A. Bi, J. Fan, M. M. Gitau, E. Amombo, L. Chen, and J. Fu. 2016. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology 25 : 1445-1457.
Liu, Z., Y. Jia, Y. Ding, Y. Shi, Z. Li, Y. Guo, Z. Gong, and S. Yang. 2017. Plasma Membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune cbf signaling during cold response. Mol. Cell 66 : 7-8.
Lynch, J. P. 2007. Roots of the second green revolution. Aust. J. Bot. 55 : 493-512.
Mahalingam, R. and N. Fedoroff. 2003. Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol. Plant. 119: 56-68.
Meister, R., M. S. Rajani, D. Ruzicka, and D. P. Schachtman. 2014. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 19 : 779-788.
Merlino, A., I. R. Krauss, I. Castellano, M. R. Ruocco, A. Capasso, E. D. Vendittis, B. Rossi, and F. Sica. 2014. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability. Biochim. Biophys. Acta 1844 : 632-640.
Miyake, C. and K. Asada. 1996. Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound i of ascorbate peroxidase. Plant Cell Physiol. 37 : 423-430.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 : 405-410.
Mohapatra, S. S. R. J. Poole, and R. S. Dhindsa. 1987. Cold acclimation, freezing resistance and protein synthesis in alfalfa (Medicago sativa L. cv. Saranac). J. Exp. Bot. 195 : 1697-1703.
Morishita, T., N. Fumoto, T. Yoshizawa, and K. Kagawa . 1987. Varietal differences in cadmium levels of rice grains of japonica, indica, javanica, and hybrid varieties produced in the same plot of a field. Soil Scl. Plant Nutr. 33 : 629-637.
Morita, S., H. Kaminaka, T. Masumura, and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40 : 417-422.
Morsy, M. R., L. Jouve, J. Hausman, L. Hoffmann, and J. M. Stewart. 2006. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol.162 : 157-167.
Muscolo, A., M. Sidari, U. Anastasi, C. Santonoceto, and A. Maggio. 2014. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J. Plant Interact. 9 : 354-363.
Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
Nahar, K., J. K. Biswas, A. M. M. Shamsuzzaman, M. Hasanuzzaman, and H.N. Barman. 2009. Screening of indica rice (Oryza sativa L.) genotypes against low temperature stress. Bot. Res. Intl. 2 : 295-303.
Nauseef, W. M. 2015. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840 : 757-767.
Nanda, A. K. and M. Wissuwa. 2016. Rapid crown root development confers tolerance to zinc deficiency in rice. Front. Plant Sci. 7 : 428.
Nath, M., D. Bhatt, R. Prasad, and N. Tuteja. 2017. Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer Cham. 223-232.
Neill, S. J., R. Desikan, A. Clarke, R. D. Hurst, and J. T. Hancock. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53 : 1237-1247.
Neilson, K. A., A. P. Scafaro, J. M. Chick, I. S. George, S. C. V. Sluyter, S. P. Gygi, B. J. Atewell, and P. A. Haynes. 2013. The influence of signals from chilled roots on the proteome of shoot tissues in rice seedlings. Proteomics13: 1922-1933.
Ndong, C., J. Danyluk, N. P. A. Huner, and F. Sarhan. 2001. Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol. Biol. 45: 691-703.
Okuda, T., Y. Matsuda, A. Yamanaka, and A. Sagisaka. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97 : 1265-1267.
Omran, R.G. 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol. 65 : 407-408.
Orvar, B. L., V. Sangwan, F. Omann, and R. S. Dhindsa. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 23 : 785-794.
Paoletti, F., D. Aldinucci, A. Mocali, and A. Caparrini.1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts . Anal. Biochem. 153 : 536-541.
Patterson, W. R. and T. L. Poulos. 1995. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34 : 4331-4341.
Penfield, S. 2008. Temperature perception and signal transduction in plants. New Phytol. 179 : 615-628.
Pouramir-Dashtmian, F., M. Khajeh-Hosseini, and M. Esfahani. 2014. Alleviating harmful effects of chilling stress on rice seedling via application of spermidine as seed priming factor. Afr. J. Agric. Res. 9 : 1412-1418.
Prasad, T. K., M. D. Anderson, B. A. Martin, and C. R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6 : 65-74.
Prasad, T. K. 1996. Mechanisms of chilling induced oxidative stress injury and tolerance in developing maize seedlings changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J. 10 : 1017-1026.
Qian, Q., D. Zeng, P. He, X. Zheng, Y. Chen, and L. Zhu. 2000. QTL analysis of the rice seedling cold tolerance in a double haploid population derived from anther culture of a hybrid between indica and japonica rice. Chinese Sci. Bull. 45 : 448-453.
Raschke, K., M. Pierce, and C. C. Popiela. 1976. Abscisic acid content and stomatal sensitivity to CO2 in leaves of xanthium strumarium l. after pretreatments in warm and cold growth chambers. Plant Physiol. 57 : 115-121.
Reilly, K., R. Góomez-Váasquez, H. Buschmann, J. Tohme, and J. R. Beeching. 2003. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol. Biol. 53: 669-685 .
Rebouillat, J., A. Dievart, J. L. Verdeil, J. Escoute, G. Giese, J. C. Breitler, P. Gantet, S. Espeout, E. Guiderdoni, and C. Périn. 2008. Molecular genetics of rice root development. Rice 2 : 15-34.
Rosa, S. B., A. Caverzan, F. K. Teixeira, F. Lazzarotto, J. A. G. Silveira, S. L. Ferreira-Silva, J. Abreu-Neto, R. Margis, M. Margis-Pinheiro. 2010. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71 : 548-558.
Rose ,T. J., S. M. Impa, M. T. Rose, J. Pariasca-Tanaka, A. Mori, S. Heuer, S. E. Johnson-Beebout, and M. Wissuwa. 2013. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding . Ann. Bot. 112 : 331-345.
Ruelland, E., M. N. Vaultier, A. Zachowski, and V. Hurry. 2009. Chapter 2 cold signalling and cold acclimation in plants. Adv. Bot. Res. 49 : 35-150.
Ruelland, E. and A. Zachowski. 2010. How plants sense temperature. Environ. Exp. Bot. 69 : 225-232.
Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and-tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109 : 105-113.
Sagi, M. and R. Fluhr. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340.
Sampathkumar, A., A. Yan, P. Krupinski, and E. M. Meyerowitz. 2014. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24 : R475-R483.
Setter, T. L. and H. Greenway. 1988. Growth reductions of rice at low root temperature decreases in nutrient uptake and development of chlorosis. J. Exp. Bot. 39 : 811-819.
Sharp, K. H., M. Mewies, P. C. E. Moody, and E. L. Raven. 2003. Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat . Struct. Mol. Biol. 10 : 303-307.
Shringarpure, R., T. Grune, J. Mehlhase, and K. J. A. Davies. 2003. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J. Biol. Chem. 278 : 311-318.
Sharifi, P. 2010. Evaluation on sixty-eight rice germplasms in cold tolerance at germination stage. Rice Sci. 17 : 77-81.
Shimono, H., A. Ishii, E. Kanda, M. Suto, and K. Nagano. 2011. Genotypic variation in rice cold tolerance responses during reproductive growth as a function of water temperature during vegetative growth. Crop Sci. 5 : 290-297.
Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. BOT. 2012 : 1-25.
Shakiba, E., J. D. Edwards, F. Jodari, S. E. Duke, A. M. Baldo, P. Korniliev, S. R. McCouch, and G. C. Eizenga. 2017. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. Plos One 12 : e0172133.
Sies, H. 2014. Role of metabolic H2O2 generation redox signaling and oxidative stress. J. Biol. Chem. 289 : 8735-8741.
Smith, I. K., A. C. Kendall, A. J. Keys, J. C. Turner, and P. J. Lea. 1985. The regulation of the biosynthesis of glutathione in leaves of barely (Hordeum vulgare L.). Plant Sci. 41: 11-17.
Srinivasana, A., N. P. Saxenab, and C. Johansenb. 1999. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crop Res. 60 : 209-222.
Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller,and Z. Cheng. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007. New York Cambridge University Press.
Soitamo, A. J., M. Piippo, Y. Allahverdiyeva, N. Battchikova, and E. M. Aro. 2008. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 8 : 13.
Solanke, A. U. and A. K. Sharma. 2008. Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 14 : 69-79.
Suzuki, N. and R. Mittler. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plant. 126 : 45-51.
Tang, L., S. Y. Kwon, S. H. Kim, J. S. Kim, J. S. Choi, K. Y. Cho, C. K. Sung, S. S. Kwak, and H. S. Lee. 2006. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep. 25 : 1380-1386.
Vardhini, B. V. and S. S. R. Rao. 2003. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 45 : 25-31.
Vijayakumar, H., S. K. Thamilarasan, A. Shanmugam, S. Natarajan, H. J. Jung, J. I. Park, H. Kim, M. Y. Chung, and I. S. Nou. 2016. Glutathione transferases superfamily: cold-inducible expression of distinct GST genes in brassica oleracea. Int. J. Mol. Sci. 17 : 1211.
Wang, C. Y. 1990. Chilling Injury of Horticultural Crops. CRC Press.
Wang, Z. F., J. F. Wang, F. H. Wang, Y. M. Bao, Y.Y. Wu, and H. S. Zhang. 2009. Genetic control of germination ability under cold stress in rice. Rice Sci. 16 : 193-180.
Wang, L., M. Albert, E. Einig, U. Fürst, D. Krust, and G. Felix. 2016. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants 2, 16185.
Welcha, J. R., J. R. Vincent, M. Auffhammer, P. F. Moya, A. Dobermann, and D. Dawe. 2010. Rice yields in tropicalsubtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. P. Natl. Acad. Sci. USA.107 : 14562–14567.
Wintermans, I. F. G. M., and A. De Mots. 1965. Spectrophotometric characteristics of chlorphylls a and b and their pheophytins in ethanol. Biochem. Biophys. Acta. 109: 448-453.
Wise, R. R. and A. W. Naylor. 1987. Chilling-enhanced photooxidation the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83 : 272-277.
Wu, W. and S. Cheng. 2014. Root genetic research, an opportunity and challenge to rice improvement. Field Crop Res. 165 : 111-124.
Wu, T. M., W. R. Lin, C. H. Kao, and C. Y. Hong. 2015. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Mol. Biol. 87 : 555-564.
Xu, J., X. Duan, J. Yang, J. R. Beeching, and P. Zhang. 2013. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signaling & Behavior 8:6, e24525.
Xu , J., J. Yang, X. Duan, Y. Jiang and P. Zhang. 2014. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biology 14 : 208.
Yan, S. P., Q. Y. Zhang, Z. C. Tang, and W. A. Su. 2006. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol. Cell. Proteomics 5 : 484-496.
Yoshida, S. 1981. Fundamentals of rice crop science. Int. Rice Res. Inst.
Yoshida, H. and A. Kato. 1994. Cold-induced accumulation of RNAs and cloning of cDNAs related to chilling injury in rice. Jpn. J. Breed. 44 : 361-365.
Yun, K. Y., M. R. Park, B. Mohanty, V. Herath, F. Xu, R. Mauleon, Ed. Wijaya, V. B. Bajic, R. Bruskiewich, and B. G. de los Reyes. 2010. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 10 : 16.
Zhang, S. and H. V. Scheller. 2004. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45 : 1595-1602.
Zhang, C., J. Liu, Y. Zhang, X. Cai, P. Gong, J. Zhang, T. Wang , H. Li, and Z. Ye. 2010. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep. 30 : 389-398.
Zhang, T., X. Zhao, W. Wang, Y. Pan, L. Huang, X. Liu, Y. Zong, L.
Zhu, D. Yang, and B. Fu. 2012. Comparative transcriptome profiling
of chilling stress responsiveness in two contrasting rice genotypes.
Plos one 7 : e43274.
Zhang, Z., Q. Zhang, J. Wu, X. Zheng, S. Zheng, X. Sun, Q. Qiu, and T. Lu. 2013. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. Plos one 8 : e57472.
Zhang, Q., Q. Chen, S. Wang, Y. Hong, and Z. Wang. 2014. Rice and cold stress: methods for its evaluation and summary of cold tolerance -related quantitative trait loci. Rice 7 : 24.
Zhang, J., H. Yuan, Y. Yang, T. Fish, S. M. Lyi, T. W. Thannhauser, L. Zhang, and L. Li. 2016. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. J. Exp. Bot. 67 : 2731-2744.
Zhao, X.Q., W. S. Wang, F. Zhang, T. Zhang, W. Zhao, B. Y. Fu, and Z. K. Li. 2013. Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice 6 : 23.
Zhou, L., S. A. Bokhari, C. J. Dong, and J. Y. Liu. 2011. Comparative
proteomics analysis of the root apoplasts of rice seedlings in response
to hydrogen peroxide. Plos one 6 : e16723.
Zhou, J., J. Wang, K. Shi, X. J. Xia, Y. H. Zhou, and J. Q. Yu. 2012. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol. Bioch. 60 : 141-149.
Zhou, S., W. Jiang, F. Long, S. Cheng, W. Yang, Y. Zhao, and D. X. Zhou. 2017. Rice homeodomain protein wox11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29 : 1088-1104.
Zhu, S. Q., C. M. Yu, X. Y. Liu, and B. H. Ji. 2007. Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. J. Integr. Plant Biol. 49 : 463-471.
Zinn, K. E., M. Tunc-Ozdemir, and J. F. Harper. 2010. Temperature stress and plant sexual reproduction uncovering the weakest links. J. Exp. Bot. 61: 1959-1968.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top