跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓緯玄
研究生(外文):Woei-Shyuan Jwo
論文名稱:建立台灣兩系雜交水稻之育種平台
論文名稱(外文):Establishment on Breeding Systems of Two-line Hybrid Rice in Taiwan
指導教授:陳宗禮陳宗禮引用關係
口試委員:陳駿季盧虎生許志聖黃文理
口試日期:2017-07-05
學位類別:博士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:202
中文關鍵詞:兩系雜交水稻育種平台光/溫敏雄不稔
外文關鍵詞:Two-line hybrid riceBreeding systemsPhotoperiod/thermo-sensitive genic male sterility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
水稻為臺灣最主要生產與消費的糧食作物,開發高產品種一直是水稻育種重要目標之一,其中雜種優勢運用是一可行的方向,兩系法雜交水稻為目前超級雜交稻的主要選育方法。本論文比較高產的純系水稻與超級雜交稻在臺灣的生產表現,探究兩者在臺灣環境下表現的高產潛力。進一步就試驗場域進行環境因子分析,藉以評估、建構臺灣環境下的兩系法雜交水稻雄不稔親本篩選、鑑定模式。再以篩選所得之材料,探討不同光/溫敏雄不稔相關基因在臺灣環境的表現,最終以分子輔助選拔方式將相關基因導入臺灣栽培品種,建構臺灣兩系雜交稻育種的基礎技術平台。
收集國際上20個高產的純系水稻品種及7個中國大陸超級雜交稻品種分別進行產量評估試驗,結果顯示高產的純系水稻品種與臺灣栽培品種TN 11或TNG 67的產量無顯著差異或較低。穗數及一穗穎花數為影響高產純系水稻品種產量的主要因子。而參試超級雜交稻品種普遍顯著比對照品種TCS 17高產,產量最高品種約比TCS 17增產2.0 Mg ha-1 (一期作) 與1.2 Mg ha-1 (二期作)。超級雜交稻在臺灣栽培,必須保證其單株穎花數及維持一定的單位面積穗數,才能獲致高產。因此,穗數與一穗穎花數的改善是提高臺灣水稻產量可行的方向。
藉由相關資料蒐集、場域分析、方法設計,進行水稻光/溫敏雄不稔種原篩選。利用自然環境的變化,以延後二期作栽培期的方式,成功建立簡易、可供大規模選拔及驗證的育種選拔模式。同時亦從超級雜交稻「88S/0293」組合分離後裔,篩選獲得同時具有光敏雄不稔pms3基因與溫敏雄不稔tms5基因的光/溫敏雄不稔新品系「MSA」及一系列帶有不同基因組合的重組自交系。遺傳分析結果顯示,不論各雜交組合是否僅包含pms3基因、tms5基因或同時有兩個基因,所有雜交組合均僅符合1對隱性基因的分離比;利用雜交後裔進行基因型與表現型的連鎖分析,顯示在第2對染色體存在一個與光/溫敏雄不稔有關的QTL (qTMS5),可解釋變異量達82.88%-95.96%,惟pms3基因的貢獻度則極低。因此,推測在臺灣一期作環境中qTMS5的作用極大,足以掩蓋住其他因子表現,或臺灣一期作環境無法誘導pms3基因的表現。以光敏雄不稔pms3基因的功能性分子標誌pms3-CAPS與溫敏雄不稔tms5基因的緊密連鎖分子標誌tms5-InDel,可直接應用於秈稉雜交的分子輔助篩選,僅需在高世代進行特性鑑定,即可快速選拔出具有pms3與tms5兩個基因的光/溫敏雄不稔品系。同時帶有pms3、tms5兩個基因的近同源系,其雄不稔性表現較佳且穩定。本論文成果除建立兩系雜交水稻雄不稔親本的大規模育種選拔方法外,並為將來臺灣兩系雜交水稻的選育提供有用的基礎資訊。
Abstract
Rice is the most widely crop grown and staple food in Taiwan. Therefore, developing a rice cultivar with high yield is one of main aims of rice breeding. While the use of heterosis is currently a potential strategy, the two-line hybrid rice breeding is the main method for super hybrid rice. In this study, we utilized the high-yielding rice (pure line) and super-hybrid rice variety to explore the potential of increasing yield in the environment in Taiwan. The environmental factors of the test field were analyzed, evaluated, and screened to establish the male sterility line for selection of two-line hybrid rice in Taiwan. Furthermore, with the screened materials, we studied different photoperiod/thermo-sensitive genic male sterility-related gene expressions and thus to introduce them into Taiwan’s cultivars by molecular-assisted backcrossing (MAB) as the two-lines hybrid rice breeding technology platform.
The yield evaluation experiment was carried out with 20 international high-yielding rice and 7 super-hybrid rice varieties from China, and the results showed that there was no significant difference (or lower performance) between the yield of high-yielding rice varieties and the ones of Taiwan cultivars TN 11 or TNG 67. Panicle number and spikelet number per panicle were the main factors affecting the yield of high-yielding varieties. Super-hybrid rice varieties were higher than the control varieties TCS 17, which its highest yield was increased about 2.0 Mg ha-1 (first crop) and 1.2 Mg ha-1 (second crop) than TCS 17. These results indicated that increasing spikelet number per panicle and maintaining enough panicle number per meter square were a potential ways to obtain higher yield for super-hybrid rice cultivation in Taiwan.
By data collection, field environment analysis, and selection method design, the screening of the different photoperiod/thermo-sensitive genic male sterility germplasm was conducted. And by adjustment of transplanting date according to panicle differentiation stage in second crop season, we successfully established a simple breeding-model for screening and validation which can be applied on large-scale selection. From the super-hybrid rice ‘88S / 0293’ variety, we screened the new strain “MSA” which has both pms3 and tms5 genes, and also recombinants inbreeding lines with different combinations of pms3 and tms5 genes. The genetic analysis showed that all hybrid combinations have only the separation ratio of one individual recessive gene no matter whether the hybrid combinations included the pms3 gene, the tms5 gene or both. Linked analysis of genotype and phenotype by hybrid progeny indicated that there was a QTL (qTMS5) associated with photoperiod/thermo-sensitive genic male sterility in the chromosome 2, which could explain the variance of 82.88% -95.96%, while the pms3 gene contribution was very low at 0.3%. Therefore, we can assume that either the role of qTMS5 QTL is greater distinctively over the other factors, or it can not be induced the expression of pms3 gene in Taiwan’s first crop season environment. Using the functional marker of the pms3 gene, pms3-CAPS, and the tms5 gene closely linkage markers, tms5-InDel, the method can be applied to the molecular-assisted selection of indica/japonica hybrid combinations. With only the high generation to phenotyping, we can efficiently sort out new photoperiod/thermo-sensitive genic male sterility lines containing the two genes, pms3 and tms5. The male sterility phenotype are better and stable with the near-isogenic lines (NILs) of two genes of pms3 and tms5. In addition to the establishment of two-line hybrid rice male sterility parents large-scale breeding selection method, the study also provides useful basic information for the breeding of Taiwanese two-line hybrid rice.
章 節 頁次
中文摘要…………………………………………………………………… i
英文摘要…………………………………………………………………… iii
目錄………………………………………………………………………… v
表目錄……………………………………………………………………… vii
圖目錄……………………………………………………………………… ix
附錄………………………………………………………………………… xii
縮寫對照表………………………………………………………………… xiii

第一章 緒言……………………………………………………………… 1
參考文獻………………………………………………………… 4
第二章 高產水稻品種產量潛力之比較研究
一、 前言……………………………………………………………… 9
二、 前人研究………………………………………………………… 10
三、 材料與方法……………………………………………………… 13
四、 結果……………………………………………………………… 15
五、 討論……………………………………………………………… 23
六、 參考文獻………………………………………………………… 29
第三章 超級雜交稻產量潛力之比較研究
一、 前言……………………………………………………………… 48
二、 前人研究………………………………………………………… 49
三、 材料與方法………………………………………………………51
四、 結果………………………………………………………………53
五、 討論………………………………………………………………60
六、 參考文獻…………………………………………………………66
第四章 兩系雜交水稻親本適應性篩選、表現與評估
一、 前言………………………………………………………………79
二、 前人研究…………………………………………………………80
三、 材料與方法………………………………………………………82
四、 結果………………………………………………………………91
五、 討論………………………………………………………………101
六、 參考文獻…………………………………………………………106
第五章 光/溫敏雄不稔相關基因之定位與分析
一、 前言………………………………………………………………132
二、 前人研究…………………………………………………………133
三、 材料與方法………………………………………………………135
四、 結果………………………………………………………………138
五、 討論………………………………………………………………142
六、 參考文獻…………………………………………………………145
第六章 利用分子標誌輔助選育水稻臺農67號光/溫敏雄不稔近同源系
一、 前言………………………………………………………………168
二、 前人研究…………………………………………………………169
三、 材料與方法………………………………………………………171
四、 結果………………………………………………………………173
五、 討論………………………………………………………………177
六、 參考文獻…………………………………………………………180
第七章 結論………………………………………………………………195
參考文獻………………………………………………………… 199
第一章 參考文獻
行政院農業委員會。2016。糧食供需年報 (104年) 。行政院農業委員會。臺北市。
袁隆平。2006。超級雜交稻研究。上海科學技術出版社。上海。366頁。
張華麗、陳曉陽、黃建中、鄂志國、龔俊義、舒慶堯。2015。中國兩系雜交水稻光溫敏核不育基因的鑒定與演化分析。中國農業科學 48:1-9。
陳俊仁、姚銘輝、陳宣蘋、廖芳瑾。2014。糧食生產評估系統之建置:以水稻生產為例。臺灣農業研究 63:84-90。
鄧曉建、楊仁崔。1997。水稻光敏核不育系不育基因的等位性研究。西南農業學報 10:1-6。
Cassman, K. G. 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U.S.A. 96:5952-5959.
Cassman, K. G., A. R. Dobermann, D. T. Walters and H. Yang. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28:315-358.
Chen, L. Y., Y. H. Xiao and D. Y. Lei. 2010. Mechanism of sterility and breeding strategies for photoperiod/thermo-sensitive genic male sterile rice. Rice Sci. 17:161-167.
Cheng, S., Z. Sun, H. Si and L. Zhuo. 1995. Classification of fertility response to photoperiod and temperature in dual-purpose genic male sterile lines. Scien. Agric. Sin. 29:11-16 (in Chinese with English abstract).
Ding, J., Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao and Q. Zhang. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109:2654-2659.
Dingkuhn, M., M. R. C. Laza, U. Kumar, K. S. Mendez, B. Collard, K. Jagadish, R. K. Singh, T. Padolina, M. Malabayabas, E. Torres, M. C. Rebolledo, B. Manneh and A. Sow. 2015. Improving yield potential of tropical rice: Achieved levels and perspectives through improved ideotypes. Field Crops Res. 182:43-59.
Donald, C. M. 1968. The breeding of crop ideotypes. Euphytica 17:385-403.
IRRI. 2006. Bringing hope, improving lives: Strategic plan 2007–2015. International Rice Research Institute. Manila (Philippines). 61 p.
Katsura, K., S. Maeda, I. Lubis, T. Horie, W. Cao and T. Shiraiwa. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’. Field Crops Res. 107:1-11.
Khush, G. S., W. R. Coffman and H. M. Beachell. 2001. The history of rice breeding: IRRI's contribution. pp. 117-135. in: Rice Research and Production in the 21st Century: Symposium Honoring Robert F. Chandler, Jr. (Rockwood, W. G. eds) International Rice Research Institute, Los Banos (Philippines). 224 p.
Li, L., S. F. Song and N. Li. 2011. Advances in photoperiod-thermo sensitive genic male sterile of rice. Hunan Agric. Sci. 11:4-7 (in Chinese with English abstract).
Long, Stephen P., A. Marshall-Colon and X. G. Zhu. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56-66.
Maclean, J., B. Hardy and G. Hettel. 2013. Rice Almanac, 4th edition. International Rice Research Institute, Los Banos (Philippines). 283 p.
Peng, H., X. Chen, Y. Lu, Y. Peng, B. Wan, N. Chen, B. Wu, S. Xin and G. Zhang. 2010. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 120:1013-1020.
Peng, S., G. Khush and K. Cassman. 1994. Evolution of the new plant ideotype for increased yield potential. p. 5-20. in: Breaking the yield barrier. Proceedings of a workshop on rice yield potential in favourable environments. (Cassman, K. G. eds) International Rice Research Institute, Philippines. 141 pp.
Peng, S., G. S. Khush, P. Virk, Q. Tang and Y. Zou. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 108:32-38.
Peng, S. and G. Khushg. 2003. Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod. Sci. 6:157-164.
Ray, D. K. and J. A. Foley. 2013. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8:044041.
Schlichting, C. D. 2002. Phenotypic plasticity in plants. Plant Species Biol. 17:85-88.
Sheng, Z., X. Wei, G. Shao, M. Chen, J. Song, S. Tang, J. Luo, Y. Hu, P. Hu and L. Chen. 2013. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.). Plant Breed. 132:159-164.
Si, H. M., Y. P. Fu, W. Z. Liu and G. C. Hu. 2012. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta agron. Sin. 38:394-407 (in Chinese with English abstract)
Tong, Z., T. Wang and Y. Xu. 1990. Evidence for involvement of phytochrome regulation in male-sterility of a mutant of Oryza sativa L. Photochem. Photobiol. 52:161-164.
Wang, D., M. R. C. Laza, K. G. Cassman, J. Huang, L. Nie, X. Ling, G. S. Centeno, K. Cui, F. Wang, Y. Li and S. Peng. 2016. Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crops Res. 198:303-311.
Xing, Y. and Q. Zhang. 2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61:421-442.
Xu, J., B. Wang, Y. Wu, P. Du, J. Wang, M. Wang, C. Yi, M. Gu and G. Liang. 2011. Fine mapping and candidate gene analysis of ptgms2-1 , the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theor. Appl. Genet. 122:365-372.
Yang, Q., C. Liang, W. Zhuang, J. Li, H. Deng, Q. Deng and B. Wang. 2007. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene of rice thermo-sensitive genic male sterile genr tms5 by mapping. Planta 225:321-330.
Yoshinaga, S., T. Takai, Y. Arai-Sanoh, T. Ishimaru and M. Kondo. 2013. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Res. 150:74-82.
Yuan, L. 2017. Progress in super-hybrid rice breeding. Crop J. 5:100-102.
Yuan, S. C., Z. G. Zhang, H. H. He, H. L. Zen, K. Y. Lu, J. H. Lian and B. X. Wang. 1993. Two photoperiodic-reactions in photoperiod-sensitive genic male-sterile rice. Crop Sci. 33:651-660.
Zhang, P., J. Ding and Q. Zhang. 2010. The leaves and sites for inducing fertility change by photoperiod in photoperiod-sensitive genic male sterile rice. Mol. Plant Breed. 8:641-646.
Zhou, H., Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y. G. Liu and C. Zhuang. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:649-660.

第二章 參考文獻
朱鈞、盧虎生。1984。一、二期作水稻穀粒充實特性與產量構成要素之關係。臺灣省農業試驗所特刊第16號 165-179頁。
行政院農業委員會。2016。糧食供需年報 (104年)。行政院農業委員會。臺北市。
林國清。2004。水稻新品種臺南11號之育成。臺南區農業改良場研究彙報 45: 1-25。
吳志文、盧虎生。2001。臺灣地區良質米品種之概念株型。高雄區農業專訊 37: 20-21。
卓緯玄、賴明信、吳東鴻、李長沛、顏信沐、陳治官。2013。氣候變遷下水稻栽培制度調整之研究。臺中區農業改良場特刊115號 189-198頁。
袁隆平。2006。超級雜交稻研究。上海科學技術出版社。 366頁
徐正進、陳溫福、張龍步。1990。日本水稻育種的現狀與展望。水稻文摘 9: 1-6。
翁仁憲。1999。高溫及低光對水稻同化作用之影響及其生理和型態之因應。環境與稻作生產。臺灣農業試驗所、中華農業氣象學會。 121-131頁。
張素貞、許誌裕。1988。臺灣中部一年一作水稻生產潛力之研究。臺中區農業改良場研究彙報 21: 15-22。
張富洲、劉大江。1991。水稻分蘖之生理研究 (四) 不同節位葉片形態性狀與稻榖產量間之相關。中華農藝 1: 21-34。
張為斌。2015。臺農84號抗稻熱病基因座之分析定位。臺灣大學。碩士論文。
陳烈夫、魏夢麗、鄭統隆、廖大經、陳正昌、曾東海、劉大江。1996。臺灣水稻產量的一些生理問題。稻作生產改進策略研討會專刊。79-88頁。
臺灣省政府農林廳。1999。臺灣稻作發展史。793頁
廖大經、陳隆澤。2011。2003至2008年臺灣育成水稻品種 (系) 對稻熱病抗性之探討。臺灣農業研究 60: 279-292。
魏夢麗、劉大江。1984。期作間水稻光合成物質生產、分配及產量比較。劉大江、謝順景主編。稻作區域性與期作性低產及增產措施之研究。臺灣省農業試驗所。臺灣,臺中。 143-152頁。
Bernier, G., A. Havelange, C. Houssa, A. Petitjean and P. Lejeune. 1993. Physiological signals that induce flowering. Plant Cell 5: 1147-1155.
Cassman, K. G. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U.S.A. 96: 5952-5959.
Cassman, K. G., A. R. Dobermann, D. T. Walters and H. Yang. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28: 315-358.
Chen, B., E. Liu, Q. Tian, C. Yan and Y. Zhang. 2014. Soil nitrogen dynamics and crop residues. Agron. Sustain. Dev. 34: 429-442.
Chen, W. F., Z. J. Xu, W. Z. Zhang, D. R. Ma and S. L. Zhang. 2007. Advances and prospects in research of rice breeding for super high yield in China. J. Shenyang Agric. Univ. 38: 662-666. (in Chinese with English abstract)
Chung, G. S. and M. H. Heu. 1980. Status of japonica-indica hybridization in Korea. Innovative approaches to rice breeding. Selected papers from the 1979 International Rice Research Conference. International Rice Research Institute. Manila (Philippines) . p. 135-152.
Comstock, R. E. 1996. Quantitative genetics with special reference to plant and animal breeding. Iowa State University Press. Arnes, AI, United States.
IRRI. 2006. Bringing hope, improving lives: strategic plan 2007–2015. Manila (Philippines). International Rice Research Institute. 61 p.
Katsura, K., S. Maeda, I. Lubis, T. Horie, W. Cao and T. Shiraiwa. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’. Field Crop Res. 107: 1-11.
Dingkuhn, M., M. R. C. Laza, U. Kumar, K. S. Mendez, B. Collard, K. Jagadish, R. K. Singh, T. Padolina, M. Malabayabas, E. Torres, M. C. Rebolledo, B. Manneh and A. Sow. 2015. Improving yield potential of tropical rice: achieved levels and perspectives through improved ideotypes. Field Crop Res. 182: 43-59.
Dingkuhn, M., F. W. T. Penning de Vries, S. K. de Datta and H. H. van Laar. 1991. Concepts for a new plant type for direct seeded flooded tropical rice. In: Direct seeded flooded rice in the tropics. Selected papers International Rice Research Conference (IRRC), Seoul, South Korea, 1990. International Rice Research Institute. Manila, Philippines p.17-38.
Donald, C. M. 1968. The breeding of crop ideotypes. Euphytica 17: 385-403.
Horie, T. and H. Nakagawa. 1990. Modelling and prediction of developmental process in rice : I. Structure and method of parameter estimation of a model for simulating developmental process toward heading. Jpn. J. Crop Sci. 59: 687-695.
Jiang, C. Z., T. Hirasawa and K. Ishihara. 1988. Physiological and ecological characteristics of high yielding varieties in rice plants: I. Yield and dry matter production. Jpn. J. Crop Sci. 57: 132-138.
Katsura, K., S. Maeda, I. Lubis, T. Horie, W. Cao and T. Shiraiwa. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’. Field Crop Res. 107: 1-11.
Khush, G. S. 1999. Green revolution: preparing for the 21st century. Genome 42: 646-655.
Kim, S. D., J. K. Kim and D. G. Park. 2012. The Green Revolution in Korea: Development and dissemination of Tongil-type rice varieties. Northern Agriculture Research Institute, INC. Gwacheon, Korea. 178 pp.
Kim, H. Y., S. J. Lim, S. J. Yang, W. G. Ha, B. G. Oh, U. S. Yeo, N. B. Park, Y. C. Song, D. Y. Kwak, J. R. Kang, K. H. Yi, S. C. Kim, J. K. Chang, J. S. Lee, H. G. Hwang and H. C. Choi,. 2003. A Tongil-type rice varity "Areumbyeo" with super yield potential and multi-resistance to major disease. Korean J. Breed. 35:49-50. (in Korean with English abstract)
Kobata, T., T. Nagano and K. Ida. 2006. Critical factors for grain filling in low grain-ripening rice cultivars. Agron. J. 98: 536-544.
Kushibuchi, K. 1997. Historical changes in rice cultivars. p. 837-875. in: Science of the rice plant. vol. 3 Genetics. (Matsuo, T., Y. Futsuhara, F. Kikuchi and H. Yamaguchi, eds.) Food and Agriculture Policy Research Center. Tokyo. 1008 pp.
Kumar, U., M. R. Laza, J. C. Soulié, R. Pasco, K.V. S. Mendez and M. Dingkuhn. 2017. Analysis and simulation of phenotypic plasticity for traits contributing to yield potential in twelve rice genotypes. Field Crop Res. 202: 94-107.
Li, G. H., X. H. Zhong, K. Tian, N. R. Huang, J. F. Pan and T. H. He. 2013. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Scien. Agric. Sin. 46: 1323-1334. (in Chinese with English abstract)
Lin, T.F. 1990. Effect of yield components on the yield of rice in central Taiwan. Bull. Taichung Dist. Agric. Res. Ext. Sta. 26: 17-23. (in Chinese with English abstract)
Liu, L. and S. C. Hsieh. 1984. Study in the low yield among cropping seasons and areas of rice culture and the improvement strategy. Special series No. 16, Taiwan Agriculture Research Institute. Taichung, Taiwan.
Long, S. P. 2014. We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both. Plant Cell Environ. 37: 19-21.
Long, S. P., A. Marshall-Colon and X. G. Zhu. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161: 56-66.
Ma, L., L. Yang, M. Shen, L. Xia, Y. Li, G. Liu and S. Yin. 2011. Study on corp yield stability in a typical region of rice & wheat rotation based on long-term fertilization experiment. Transactions of the CSAE. 27: 117-124. (in Chinese with English abstract )
Miura K., M. Ikeda, A. Matsubara, X. J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano and M. Ashikari. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42: 545-549.
Ormrod, D. P., W. A. Bunter, D. C. Finfrock and J. R. Thysell. 1960. Responses of rice to photoperiod. Calif. Agric. 14: 6-7.
Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A.101: 9971-9975.
Peng, S., G. S. Khush and K. G. Cassman. 1994. Evolution of the new plant ideotype for increased yield potential. p. 5-20. in: Breaking the yield barrier. Proceedings of a workshop on rice yield potential in favourable environments. (Cassman, K. G. eds) International Rice Research Institute. Philippines. pp 141.
Peng, S. and G. Khushg. 2003. Four decades of breeding for varietal improvement of irrigated lowland rice in the International Rice Research Institute. Plant Prod. Sci. 6:157-164.
Peng, S., G. S. Khush, P. Virk, Q. Tang and Y. Zou. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crop Res. 108: 32-38.
Ray, D. K. and J. A. Foley. 2013. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8: 044041.
Rötter, R. P., F. Tao, J. G. Höhn and T. Palosuo. 2015. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 66: 3463-3476.
Sakamoto, T. and M. Matsuoka. 2008. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 11: 209-214.
Schlichting, C. D. 2002. Phenotypic plasticity in plants. Plant Species Biol. 17: 85-88.
Shimizu, M. 1960. Effects of nitrogen, phosphorus and potassium on the panicle differentiation and time of heading in rice plants. Jpn. J. Breed. 10: 52-60.
Slafer, G. A., R. Savin and V. O. Sadras. 2014. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Res. 157: 71-83.
Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677.
Wang, Y. D., E. Kuroda, M. Hirano and T. Murata. 1997. Analysis of high yielding mechanism of rice varieties belonging to different plant types: I. Comparison of growth and yield characteristics and dry matter production. Jpn. J. Crop Sci. 66: 293-299.
Wang, D., M. R. C. Laza, K. G. Cassman, J. Huang, L. Nie, X. Ling, G. S. Centeno, K. Cui, F. Wang, Y. Li and S. Peng. 2016. Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crop Res. 198: 303-311.
Wei, F. Z., J. C. Li, C. Y. Wang, H. J. Qu, and X. S. Shen. 2008. Effects of nitrogenous fertilizer application model on culm lodging re-sistance in winter wheat. Acta Agron. Sin. 34: 1080-1085. (in Chinese with English abstract)
Welch, J. R., J. R. Vincent, M. Auffhammer, P. F. Moya, A. Dobermann and D. Dawe. 2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. U.S.A. 107: 14562-14567.
Xing, Y. and Q. Zhang. 2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61: 421-442.
Yang W., Peng S., R. C. Laza, R. M. Visperas and M. L. Dionisio-Sese. 2007. Grain yield and yield attributes of new plant type and hybrid rice all rights reserved. Crop Sci. 47:1393-1400.
Yin, X., M. J. Kropff, T. Horie, H. Nakagawa, H. G. S. Centeno, D. Zhu and J. Goudriaan. 1997a. A model for photothermal responses of flowering in rice I. Model description and parameterization. Field Crop Res. 51: 189-200.
Yin, X., M. J. Kropff, H. Nakagawa, T. Horie and J. Goudriaan. 1997b. A model for photothermal responses of flowering in rice II. Model evaluation. Field Crop Res. 51: 201-211.
Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Laguna, Philippines.
Yoshinaga, S., T. Takai, Y. Arai-Sanoh, T. Ishimaru and M. Kondo. 2013. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crop Res. 150: 74-82.
Zhang, J., G. Li, Y. Song, Z. Liu, C. Yang, S. Tang, C. Zheng, S. Wang and Y. Ding. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crop Res. 161: 64-74.
Zhang, W., L. Wu, X. Wu, Y. Ding, G. Li, J. Li, F. Weng, Z. Liu, S. Tang, C. Ding and S. Wang. 2016. Lodging resistance of japonica rice (Oryza Sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice 9: 31.
Zhao, X., Y. Zhou, J. Min, S. Wang, W. Shi and G. Xing. 2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. Environ. 156: 1-11.

第三章 參考文獻
袁隆平。2006。超級雜交稻研究。上海科學技術出版社。366頁。
陳正昌、黃真生、呂秀英、 林芳洲、蔡倍皋、郭金條、莊商路、郭同慶、胡宗仁、鄭明欽、李錄豐。1991。秈稻雜種品系區域適應性試驗。中華農業研究 40: 209-224。
陳溫福、徐正進、唐亮。2012。中國超級稻育種研究進展與前景。沈陽農業大學學報 43: 643-649。
陳建山、魏夢麗、劉大江。1984。期作間水稻光合物質供需平衡關係之比較。131-142頁。稻作區域性與期作性低產及增產措施之研究 (劉大江、謝順景編) 。臺灣省農業試驗所特刊第16號。臺灣臺中。322頁。
曾東海、黃真生。1987。雜種水稻的產量與組合力。中華農業研究 36: 161-164。
黃真生、陳正昌、林芳洲、 張盛添、郭金條、莊商路、邱運全、蘇丙鐸、胡宗仁、劉瑋婷、陳楚山、呂文通。1988。秈稻雜種品系一年一作區域適應性試驗。中華農業研究 37: 225-238。
姚銘輝、陳守泓。2009。氣候變遷下水稻生長及產量之衝擊評估。作物、環境與生物資訊 6:141-156。
Amano, T., Z. Qingsen, W. Yulong, N. Inoue and H. Tanaka. 1993. Case studies on high yields of paddy rice in Jiangsu Province, China: I. Characteristics of grain production. Jap. J. Crop Sci. 62: 267-274.
Ao, H. J., Y. X. Fang, C. M. Xiong, Z. W. Cheng, W. Liu and Y. B. Zou. 2008a. Effects of plant row spacing on yield and radiation utilization efficiency in super hybrid rice. Crop Res. 22: 263-269. (in Chinese with English abstract)
Ao, H. J., S. H. Wang, Y. B. Zou, S. B. Peng, Q. Y. Tang, Y. X. Fang, A. M. Xiao, Y. M. Chen and C. M. Xiong. 2008b. Study on yield stability and dry matter characteristics of super hybrid rice. Scien. Agric. Sin. 41: 1927-1936. (in Chinese with English abstract)
Badshah, M. A., T. Naimei, Y. Zou, M. Ibrahim and K. Wang. 2014. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods. Crop J. 2: 79-86.
Cassman, K. G. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U.S.A. 96: 5952-5959.
Chen, D. G., X. Q. Zhou, L. J. Li, X. Zhang and Y. D. Chen. 2008. Study on the relationship between yield components and yield of super rice. Guangdong Agric. Sci. 7: 101-106.
Chen, W. F., Z. J. Xu and W. Z. Zhang. 2007a. Advances and prospects in breeding japonica rice for super high yield in the northern China. Agric. Sci. China 6: 1157-1165.
Chen, W. F., Z. J. Xu, W. Z. Zhang, D. R. Ma and S. L. Zhang. 2007b. Advances and prospects in research of rice breeding for super high yield in China. J. Shenyang Agric. Univ. 38: 662-666. (in Chinese with English abstract)
Chung, G. S. and M. H. Heu. 1980. Status of japonica-indica hybridization in Korea. p. 135-152. in: Innovative approaches to rice breeding. Selected papers from the 1979 International Rice Research Conference. International Rice Research Institute. Manila (Philippines).
Evans, L. T. 1993. Crop evolution, adaptation, and yield. Cambridge University press, New York, USA. 486 pp.
Gregory, P., J. Ingram, B. Campbell, J. Goudriaan, T. Hunt, J. Landsberg, S. Linder, M. Stafford-Smith, B. Sutherst, and C. Valentin. 1999. Managed production systems. p. 229-270. In: The Terrestrial Biosphere and Global Change: implications for Natural and Managed Ecosystems. (Walker, B., W. Steffen, J. Canadell, and J. Ingram, eds.). Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 439 pp.
Huang, M., W. Zhang, L. Jiang and Y. Zou. 2013. Impact of temperature changes on early-rice productivity in a subtropical environment of China. Field Crop Res. 146: 10-15.
Huang, M., Y. B. Zou, P. Jiang, B. Xia, I. Md and H. J. Ao. 2011. Relationship between grain yield and yield components in super hybrid rice. Agric. Sci. China 10: 1537-1544.
Ida, M., R. Ohsugi, H. Sasaki, N. Aoki and T. Yamagishi. 2009. Contribution of nitrogen absorbed during ripening period to grain filling in a high-yielding rice variety, Takanari. Plant Prod. Sci. 12: 176-184.
IPCC. 2001. Climate Change 2001: Impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. (McCarthy J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1032 pp.
Kamiji, Y., H. Yoshida, J. A. Palta, T. Sakuratani and T. Shiraiwa. 2011. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crop Res. 122: 242-247.
Katsura, K., S. Maeda, T. Horie and T. Shiraiwa. 2007. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crop Res. 103: 170-177.
Katsura, K., S. Maeda, I. Lubis, T. Horie, W. Cao and T. Shiraiwa. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’. Field Crop Res. 107: 1-11.
Khush, G. S., W. R. Coffman and, H. M. Beachell. 2001. The history of rice breeding: IRRI's contribution. p. 117-135. in: Rice Research and Production in the 21st Century: Symposium Honoring Robert F. Chandler, Jr. (W. G. Rockwood, eds.) International Rice Research Institute. Los Banos, Philippines. 224 pp.
Kobata, T., T. Nagano and K. Ida. 2006. Critical factors for grain filling in low grain-ripening rice cultivars. Agron. J. 98: 536-544.
Lai, M. H., C. P. Li, W. S. Jwo, H. M. Yen, K. K. Hwu and D. H. Wu. 2016. Study on development of Japonica breeding lines introgressed high grain number gene through Marker-Assisted Backcross approach. J. Taiwan Agric. Res. 65: 31-44. (in Chinese with English abstract).
Liang, W. H., F. Shang, Q. T. Lin, C. Lou and J. Zhang. 2014. Tillering and panicle branching genes in rice. Gene 537: 1-5.
Mann, C. C. 1999. Crop scientists seek a new revolution. Science. 283:310-314.
Ohsumi, A., T. Takai, M. Ida, T. Yamamoto, Y. Arai-Sanoh, M. Yano, T. Ando and M. Kondo. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crop Res. 120: 68-75.
Peng, S., G. S. Khush and K. G. Cassman. 1994. Evolution of the new plant ideotype for increased yield potential. p. 5-20. in: Breaking the yield barrier. (Cassman K. G., eds.) International Rice Research Institute. Manila (Philippines). 141 pp.
Peng, S., K. G. Cassman, S. S. Virmani, J. Sheehy and G. S. Khush. 1999. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield. Crop Sci. 39: 1552-1559.
Peng, S., G. S. Khush, P. Virk, Q. Tang and Y. Zou. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crop Res. 108: 32-38.
Sheehy, J. E., M. J. A. Dionora and P. L. Mitchell. 2001. Spikelet numbers, sink size and potential yield in rice. Field Crop Res. 71: 77-85.
Sheehy, J. E., M. J. A. Dionora, P. L. Mitchell, S. Peng, K. G. Cassman, G. Lemaire and R. L. Williams. 1998. Critical nitrogen concentrations: implications for high-yielding rice (Oryza sativa L.) cultivars in the tropics. Field Crop Res. 59: 31-41.
Yang, W., S. Peng, R. C. Laza, R. M. Visperas and M. L. Dionisio-Sese. 2008. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agron. J. 100: 1390-1395.
Ying, J., S. Peng, Q. He, H. Yang, C. Yang, R. M. Visperas and K. G. Cassman. 1998. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crop Res. 57: 71-84.
Yoshida, H., T. Horie and T. Shiraiwa. 2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crop Res. 97: 337-343.
Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute Press. Los Banos, Philippines. 269 pp.
Yoshinaga, S., T. Takai, Y. Arai-Sanoh, T. Ishimaru and M. Kondo. 2013. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crop Res. 150: 74-82.
Yuan, L. 1998. Hybrid rice breeding for super high yield. p. 10-12. in: China and IRRI: Improving China's rice productivity in the 21st century. (Denning, G. L. and T. W. Mew, eds) International rice research institute. Manila (Philippines). 104 pp.
Yuan, L. 2017. Progress in super-hybrid rice breeding. Crop J. 5:100–102.
Zhang, Y., Q. Tang, Y. Zou, D. Li, J. Qin, S. Yang, L. Chen, B. Xia and S. Peng. 2009. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crop Res. 114: 91-98.
Zhang, Y. H., J. B. Fan, Y. L. Zhang, D. S. Wang, Q. W. Huang and Q. R. Shen. 2007. N accumulation and translocation in four Japonica rice cultivars at different N rates. Pedosphere 17: 792-800.

第四章 參考文獻
牟同敏、楊國才、曹兵、林尤珍、黃宗洪、向關倫。2001。8個秈型水稻環境敏感核不育系的轉換研究。植物學報 43:238-242。
卓緯玄、賴明信、吳東鴻、李長沛、顏信沐、陳治官。2013。氣候變遷下水稻栽培制度調整之研究。臺中區農業改良場特刊115號。189-198頁。
袁隆平。2006。超級雜交稻研究。上海科學技術出版社。366頁。
Chen, L. Y., Y. H. Xiao and D. Y. Lei. 2010. Mechanism of sterility and breeding strategies for photoperiod/thermo-sensitive genic male sterile rice. Rice Sci. 17:161-167.
Cheng, S., Z. Sun, H. Si and L. Zhuo. 1995. Classification of fertility response to photoperiod and temperature in dual-purpose genic male sterile lines. Scien. Agric. Sin. 29:11-16 (in Chinese with English abstract).
Ding, J., Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao and Q. Zhang. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109:2654-2659.
Huang, T. Y., Z. Wang, Y. G. Hu, S. P. Shi, T. Peng, X. D. Chu, J. Shi, Z. F. Xiang and D. Y. Liu. 2008. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa). Rice Sci. 15:153-156.
Izawa, T., T. Oikawa, N. Sugiyama, T. Tanisaka, M. Yano and K. Shimamoto. 2002. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16:2006-2020.
Lee, D., L. Chen and H. Suh. 2005. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L .). Theor. Appl. Genet. 111:1271-1277.
Li, L., S. F. Song and N. Li. 2011. Advances in photoperiod-thermo sensitive genic male sterile of rice. Hunan Agric. Sci. 11:4-7 (in Chinese with English abstract).
Li, X., Q. Lu, F. Wang, C. Xu and Q. Zhang. 2001. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica 119:343-348.
Liu, K. D., Z. Q. Zhou, C. G. Xu, Q. Zhang and M. A. Saghai Maroof. 1996. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90:275-280.
Peng, H., X. Chen, Y. Lu, Y. Peng, B. Wan, N. Chen, B. Wu, S. Xin and G. Zhang. 2010. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 120:1013-1020.
Peng, H., Z. Zhang, B. Wu, X. Chen, G. Zhang, B. Wan and Y. Lu. 2008. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes ( rpms1 and rpms2 ) in rice ( Oryza sativa L. ). Theor. Appl. Genet. 118:77-83.
Reddy, O. U. K., E. A. Siddiq, N. P. Sarma, J. Ali, A. J. Hussain, P. Nimmakayala, P. Ramasamy, S. Pammi and A. S. Reddy. 2000. Genetic analysis of temperature-sensitive male sterilty in rice. Theor. Appl. Genet. 100:794-801.
Si, H. M., Y. P. Fu, W. Z. Liu and G. C. Hu. 2012. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta Agron. Sin. 38:394-407 (in Chinese with English abstract)
Takano, M., N. Inagaki, X. Xie, S. Kiyota, A. Baba-Kasai, T. Tanabata and T. Shinomura. 2009. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc. Natl. Acad. Sci. U.S.A. 106:14705-14710.
Tang, L. Q., C. L. Xiao, N. Li and W. P. Wang. 2013. Research progress on inheritance and molecular mechanism of photoperiod-thermo-sensitive genic male sterility in rice. Hybrid Rice 28:5-10 (in Chinese with English abstract).
Tong, Z., T. Wang and Y. Xu. 1990. Evidence for involvement of phytochrome regulation in male-sterility of a mutant of Oryza sativa L. Photochem. Photobiol. 52:161-164.
Virmani, S. S. and M. Ilyas-Ahmed. 2001. Environment-sensitive genic male sterility (EGMS) in crops. Advances in Agronomy, volume 72. Academic Press. pp. 139-195.
Wang, W. 1998. Effect of end-of-day far-red light exposures on fertility alteration and flowering in photoperiod-sensitive genic male-sterile rice. J. Plant Res. 111:591-593.
Wang, W., Z. Liu, Z. Guo, G. Song, Q. Cheng, D. Jiang, Y. Zhu and D. Yang. 2011. Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics 12:462.
Wang, Y. G., Q. H. Xing, Q. Y. Deng, F. S. Liang, L. P. Yuan, M. L. Weng and B. Wang. 2003. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor. Appl. Genet. 107:917-921.
Xu, J. Y., C. H. Li and T. M. Mou. 2006. Characterization of fertility alteration in 5 thermo-sensitive genic male-sterile rice lines. J. Huazhong Agric. Univ. 25:479-482. (in Chinese with English abstract).
Xue, Q., K. Edoh, H. Li, N. Zhang, J. Yan, S. McCouch and E. D. Earle. 1999. Production and testing of plants regenerated from protoplasts of photoperiod sensitive genic male sterile rice (Oryza sativa L.). Euphytica 105:167-172.
Yang, Q., C. Liang, W. Zhuang, J. Li, H. Deng, Q. Deng and B. Wang. 2007. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene of rice thermo-sensitive genic male sterile genr tms5 by mapping. Planta 225:321-330.
Yuan, L. 2017. Progress in super-hybrid rice breeding. Crop J. 5:100-102.
Yuan, S. C., Z. G. Zhang, H. H. He, H. L. Zen, K. Y. Lu, J. H. Lian and B. X. Wang. 1993. Two photoperiodic-reactions in photoperiod-sensitive genic male-sterile rice. Crop Sci. 33:651-660.
Zhang, P., J. Ding and Q. Zhang. 2010. The leaves and sites for inducing fertility change by photoperiod in photoperiod-sensitive genic male sterile rice. Mol. Plant Breed. 8:641-646.
Zhou, H., Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y.-G. Liu and C. Zhuang. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:649-660.

第五章 參考文獻
向陽、李必湖、吳厚雄、陳良碧。2002。光敏、溫敏核不育水稻核不育基因等位性及基因對數的研究。種子 4:37-39。
袁隆平。2006。超級雜交稻研究。上海科學技術出版社。366頁。
Broman, K. W., H. Wu, Ś. Sen and G. A. Churchill. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890.
Ding, J., Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao and Q. Zhang. 2012a. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109:2654-2659.
Ding, J., J. Shen, H. Mao, W. Xie, X. Li and Q. Zhang. 2012b. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol. Plant 5:1210-1216.
Dong, N. V., P. K. Subudhi, P. N. Luong, V. D. Quang, T. D. Quy, H. G. Zheng, B. Wang and H. T. Nguyen. 2000. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor. Appl. Genet. 100:727-734.
Fan, Y., J. Yang, S. M. Mathioni, J. Yu, J. Shen, X. Yang, L. Wang, Q. Zhang, Z. Cai, C. Xu, X. Li, J. Xiao, B. C. Meyers and Q. Zhang. 2016. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 113:15144-15149.
Haley, C. S. and S. A. Knott. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315-324.
Huang, T. Y., Z. Wang, Y. G. Hu, S. P. Shi, T. Peng, X. D. Chu, J. Shi, Z. F. Xiang and D. Y. Liu. 2008. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa). Rice Sci. 15:153-156.
Hussain, A. J., J. Ali, E. A. Siddiq, V. S. Gupta, U. K. Reddy and P. K. Ranjekar. 2012. Mapping of tms8 gene for temperature-sensitive genic male sterility (TGMS) in rice (Oryza sativa L.). Plant Breed. 131:42-47.
Lee, D. S., L. J. Chen and H. S. Suh. 2005. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.). Theor. Appl. Genet. 111:1271-1277.
Li, L., S. F. Song and N. Li. 2011. Advances in photoperiod-thermo sensitive genic male sterile of rice. Hunan Agric. Sci. 11:4-7. (in Chinese with English abstract)
Li, X., Q. Lu, F. Wang, C. Xu and Q. Zhang. 2001. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica 119:343-348.
Liu, X., X. Li, X. Zhang and S. Wang. 2010. Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6(t), in rice (Oryza sativa L.). Genome 53:119-124.
Lu, Q., X. H. Li, D. Guo, C. G. Xu and Q. Zhang. 2005. Localization of pms3 , a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol. Genet. Genomics 273:507-511.
Mei, M., L. Chen, Z. Zhang, Z. Li, C. Xu and Q. Zhang. 1999. pms3 is the locus causing the original photoperiod-sensitive male sterility mutation of ‘Nongken 58S’. Sci. China Series C Life Sci. 42:316-322.
Peng, H., X. Chen, Y. Lu, Y. Peng, B. Wan, N. Chen, B. Wu, S. Xin and G. Zhang. 2010. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 120:1013-1020.
Peng, H., Z. Zhang, B. Wu, X. Chen, G. Zhang, B. Wan and Y. Lu. 2008. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes ( rpms1 and rpms2 ) in rice ( Oryza sativa L. ). Theor. Appl. Genet. 118:77-83.
Pitnjam, K., S. Chakhonkaen, T. Toojinda and A. Muangprom. 2008. Identification of a deletion in tms2 and development of gene-based markers for selection. Planta 228:813-822.
Sheng, Z., X. Wei, G. Shao, M. Chen, J. Song, S. Tang, J. Luo, Y. Hu, P. Hu and L. Chen. 2013. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.). Plant Breed. 132:159-164.
Si, H. M., Y. P. Fu, W. Z. Liu and G. C. Hu. 2012. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta Agron. Sin. 38:394-407. (in Chinese with English abstract)
Subudhi, P. K., R. P. Borkakati, S. S. Virmani and N. Huang. 1997. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis. Genome 40:188-194.
Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77-78.
Wang, B., W. W. Xu, J. Z. Wang, W. Wu, H. G. Zheng, Z. Y. Yang, J. D. Ray and H. T. Nguyen. 1995. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers. Theor. Appl. Genet. 91:1111-1114.
Wang, W., Z. Liu, Z. Guo, G. Song, Q. Cheng, D. Jiang, Y. Zhu and D. Yang. 2011. Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics 12:462.
Wang, Y. G., Q. H. Xing, Q. Y. Deng, F. S. Liang, L. P. Yuan, M. L. Weng and B. Wang. 2003. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor. Appl. Genet. 107:917-921.
Wu, D. H., H. P. Wu, C. S. Wang, H. Y. Tseng and K. K. Hwu. 2013. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 192:131-143.
Xu, J., B. Wang, Y. Wu, P. Du, J. Wang, M. Wang, C. Yi, M. Gu and G. Liang. 2011. Fine mapping and candidate gene analysis of ptgms2-1 , the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.). Theor. Appl. Genet. 122:365-372.
Xu, J. Y., C. H. Li and T. M. Mou. 2006. Characterization of fertility alteration in 5 thermo-sensitive genic male-sterile rice lines. J. Huazhong Agric. Univ. 25:479-482 (in Chinese with English abstract).
Yamaguchi, Y., R. lkeda, H. Hirasawa, M. Minami and A. Ujihara. 1997. Linkage analysis of thermosensitive genic male sterility gene, tms-2 in rice (Oryza sativa L.). Jpn. J. Breed. 47:371-373.
Yang, Q., C. Liang, W. Zhuang, J. Li, H. Deng, Q. Deng and B. Wang. 2007. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene of rice thermo-sensitive genic male sterile genr tms5 by mapping. Planta 225:321-330.
Zhang, Q., B. Z. Shen, X. K. Dai, M. H. Mei, M. A. Saghai Maroof and Z. B. Li. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 91:8675-8679.
Zhao, K., C. W. Tung, G. C. Eizenga, M. H. Wright, M. L. Ali, A. H. Price, G. J. Norton, M. R. Islam, A. Reynolds, J. Mezey, A. M. McClung, C. D. Bustamante and S. R. McCouch. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2:467.
Zhou, H., Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y.-G. Liu and C. Zhuang. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:649-660.

第六章 參考文獻
牟同敏、盧興桂、楊國財、李春海、袁潛華、萬炳良、馬霓、費震江。1996。高海拔長日低溫條件下選擇水稻光溫敏核不育系的效果和方法研究。高技術通訊 11:42-46。
張華麗、陳曉陽、黃建中、鄂志國、龔俊義、舒慶堯。2015。中國兩系雜交水稻光溫敏核不育基因的鑒定與演化分析。中國農業科學 48:1-9。
陳正昇、陳榮坤、金漢?、林彥蓉。2010。以分子輔助選種導入hd1、Hd6和ehd1抽穗期基因至水稻越光品種。作物、環境與生物資訊 7:1-20。
Andersen, J. R. and T. Lübberstedt. 2003. Functional markers in plants. Trends Plant Sci. 8:554-560.
Chen, L., Z. Zhao, X. Liu, L. Liu, L. Jiang, S. Liu, W. Zhang, Y. Wang, Y. Liu and J. Wan. 2011. Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Mol. Breed. 27:247-258.
Collard, B. C. Y. and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Proc. R. Soc. Lond., B, Biol. Sci. 363:557-572.
Ding, J., Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao and Q. Zhang. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109:2654-2659.
Divya, B., S. Robin, R. Rabindran, S. Senthil, M. Raveendran and A. J. Joel. 2014. Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43. Euphytica 200:61-77.
Frisch, M. and A. E. Melchinger. 2005. Selection theory for marker-assisted backcrossing. Genetics 170:909-917.
Hu, J., C. Xiao and Y. He. 2016. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice 9:30.
Kang, G. P., X. J. Dai, L. J. Ou, W. J. Li, M. Z. Liang and L. B. Chen. 2014. Effects of cytoplasm on the fertility of thermo-sensitive genetic male sterile (TGMS) lines of rice. Aust. J. Crop Sci. 8:999-1004.
Koebner, R. M. D. and R. W. Summers. 2003. 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol. 21:59-63.
Lai, M. H., C. P. Li, W. S. Jwo, H. M. Yen, K. K. Hwu and D. H. Wu. 2016. Study on development of Japonica breeding lines introgressed high grain number gene through marker-assisted backcross approach. J. Taiwan Agric. Res. 65:31-44. (in Chinese with English abstract).
Li, L., S. F. Song and N. Li. 2011. Advances in photoperiod-thermo sensitive genic male sterile of rice. Hunan Agric. Sci. 11:4-7 (in Chinese with English abstract).
Liu, K. D., Z. Q. Zhou, C. G. Xu, Q. Zhang and M. A. Saghai Maroof. 1996. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90:275-280.
Nas, T. M. S., D. L. Sanchez, G. Q. Diaz, M. S. Mendioro and S. S. Virmani. 2005. Pyramiding of thermosensitive genetic male sterility (TGMS) genes and identification of a candidate tms5 gene in rice. Euphytica 145:67-75.
Neeraja, C. N., R. Maghirang-Rodriguez, A. Pamplona, S. Heuer, B. C. Y. Collard, E. M. Septiningsih, G. Vergara, D. Sanchez, K. Xu, A. M. Ismail and D. J. Mackill. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 115:767-776.
Nicholas, F. W. 2006. Discovery, validation and delivery of DNA markers. Aust. J. Exp. Agric. 46:155-158.
Peng, H., X. Chen, Y. Lu, Y. Peng, B. Wan, N. Chen, B. Wu, S. Xin and G. Zhang. 2010. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 120:1013-1020.
Sundaram, R. M., M. R. Vishnupriya, S. K. Biradar, G. S. Laha, G. A. Reddy, N. S. Rani, N. P. Sarma, R. V. Sonti. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160: 411-422.
Si, H. M., Y. P. Fu, W. Z. Liu and G. C. Hu. 2012. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta Agron. Sin. 38:394-407 (in Chinese with English abstract)
Tanee, S., M. Weerachai, P. Chalermpol and S. Prapa. 2014. Introgression of gene for non-pollen type thermo-sensitive genic male sterility to Thai rice cultivars. Rice Sci. 21:123-126.
Varshney, R. K., A. Graner and M. E. Sorrells. 2005. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10:621-630.
Wang, W., Z. Liu, Z. Guo, G. Song, Q. Cheng, D. Jiang, Y. Zhu and D. Yang. 2011. Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics 12:462.
Wu, D. H., H. P. Wu, C. S. Wang, H. Y. Tseng and K. K. Hwu. 2013. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 192:131-143.
Xu, Y., S. R. McCouch and Q. Zhang. 2005. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol. Biol. 59:7-26.
Zhou, H., Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y.-G. Liu and C. Zhuang. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:649-660.


第七章 參考文獻
朱鈞、盧虎生。1984。一、二期作水稻穀粒充實特性與產量構成要素之關係。 p.165-179。in:臺灣省農業試驗所特刊第16號。臺灣省農業試驗所。臺灣。臺中。
牟同敏、盧興桂、楊國財、李春海、袁潛華、萬炳良、馬霓、費震江。1996。高海拔長日低溫條件下選擇水稻光溫敏核不育系的效果和方法研究。高技術通訊 11:42-46。
張華麗、陳曉陽、黃建中、鄂志國、龔俊義、舒慶堯。2015。中國兩系雜交水稻光溫敏核不育基因的鑒定與演化分析。中國農業科學 48:1-9。
陳建山、魏夢麗、劉大江。1984。期作間水稻光合物質供需平衡關係之比較。p. 131-142。in: 稻作區域性與期作性低產及增產措施之研究。劉大江、謝順景編。臺灣省農業試驗所。臺灣。臺中。
魏夢麗、劉大江。1984。期作間水稻光合成物質生產、分配及產量比較。 p.143-152。in: 稻作區域性與期作性低產及增產措施之研究。劉大江、謝順景編。臺灣省農業試驗所。臺灣。臺中。
Badshah, M. A., T. Naimei, Y. Zou, M. Ibrahim and K. Wang. 2014. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods. Crop J. 2:79-86.
Chen, B., E. Liu, Q. Tian, C. Yan and Y. Zhang. 2014. Soil nitrogen dynamics and crop residues. Agron. Sustain. Dev. 34: 429-442.
Cheng, S., Z. Sun, H. Si and L. Zhuo. 1995. Classification of fertility response to photoperiod and temperature in dual-purpose genic male sterile lines. Scien. Agric. Sin. 29:11-16 (in Chinese with English abstract).
Ding, J., Q. Lu, Y. Ouyang, H. Mao, P. Zhang, J. Yao, C. Xu, X. Li, J. Xiao and Q. Zhang. 2012. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Nat. Acad. Sci. 109:2654-2659.
Dingkuhn, M., M. R. C. Laza, U. Kumar, K. S. Mendez, B. Collard, K. Jagadish, R. K. Singh, T. Padolina, M. Malabayabas, E. Torres, M. C. Rebolledo, B. Manneh and A. Sow. 2015. Improving yield potential of tropical rice: achieved levels and perspectives through improved ideotypes. Field Crop Res. 182: 43-59.
Divya, B., S. Robin, R. Rabindran, S. Senthil, M. Raveendran and A. J. Joel. 2014. Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43. Euphytica 200:61-77.
Huang, M., Y. b. Zou, P. Jiang, B. Xia, I. Md and H. j. Ao. 2011. Relationship between grain yield and yield components in super hybrid rice. Agric. Sci. China 10:1537-1544.
Kamiji, Y., H. Yoshida, J. A. Palta, T. Sakuratani and T. Shiraiwa. 2011. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crop Res. 122:242-247.
Kang, G. P., X. J. Dai, L. J. Ou, W. J. Li, M. Z. Liang and L. B. Chen. 2014. Effects of cytoplasm on the fertility of thermo-sensitive genetic male sterile (TGMS) lines of rice. Aust. J. Crop Sci. 8:999-1004.
Katsura, K., S. Maeda, T. Horie and T. Shiraiwa. 2007. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crop Res. 103:170-177.
Katsura, K., S. Maeda, I. Lubis, T. Horie, W. Cao and T. Shiraiwa. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’. Field Crop Res. 107:1-11.
Koebner, R. M. D. and R. W. Summers. 2003. 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol. 21:59-63.
Liang, W. H., F. Shang, Q. T. Lin, C. Lou and J. Zhang. 2014. Tillering and panicle branching genes in rice. Gene 537:1-5.
Long, Stephen P., A. Marshall-Colon and X. G. Zhu. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56-66.
Ohsumi, A., T. Takai, M. Ida, T. Yamamoto, Y. Arai-Sanoh, M. Yano, T. Ando and M. Kondo. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crop Res. 120:68-75.
Peng, H., X. Chen, Y. Lu, Y. Peng, B. Wan, N. Chen, B. Wu, S. Xin and G. Zhang. 2010. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 120:1013-1020.
Peng, S., G. S. Khush, P. Virk, Q. Tang and Y. Zou. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crop Res. 108:32-38.
Sheehy, J. E., M. J. A. Dionora and P. L. Mitchell. 2001. Spikelet numbers, sink size and potential yield in rice. Field Crop Res. 71:77-85.
Sheng, Z., X. Wei, G. Shao, M. Chen, J. Song, S. Tang, J. Luo, Y. Hu, P. Hu and L. Chen. 2013. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.). Plant Breed. 132:159-164.
Yang, Q., C. Liang, W. Zhuang, J. Li, H. Deng, Q. Deng and B. Wang. 2007. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene of rice thermo-sensitive genic male sterile genr tms5 by mapping. Planta 225:321-330.
Yang, W., S. Peng, R. C. Laza, R. M. Visperas and M. L. Dionisio-Sese. 2008. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agron. J. 100:1390-1395.
Yoshida, H., T. Horie and T. Shiraiwa. 2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crop Res. 97:337-343.
Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute Press. Los Banos, Philippines. 269 pp.
Yoshinaga, S., T. Takai, Y. Arai-Sanoh, T. Ishimaru and M. Kondo. 2013. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crop Res. 150: 74-82.
Zhang, Y., Q. Tang, Y. Zou, D. Li, J. Qin, S. Yang, L. Chen, B. Xia and S. Peng. 2009. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crop Res. 114:91-98.
Zhou, H., Q. Liu, J. Li, D. Jiang, L. Zhou, P. Wu, S. Lu, F. Li, L. Zhu, Z. Liu, L. Chen, Y.-G. Liu and C. Zhuang. 2012. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22:649-660.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top