李麗田 (2015)。光對茶樹兒茶素合成的影響。中國農業科學院。碩士論文。
周宜沁 (2014)。聖約翰草有效成分於不同栽培條件下之含量與其微波輔助萃取方法之研究。國立中興大學農藝學系。碩士論文。台中。劉素強、楊娟、袁林穎、鄔秀宏、李中林 (2005)。烘焙提香條件對紅茶感官品質及主要生化成分的影響。食品安全質量檢測學報6:1301-1306。
Akuli, A., A. Pal, R. Joshi, A. Gulati, T. Dey, and N. Bhattacharyya. (2012). A new method for rapid detection of total colour (TC), theaflavins (TF), thearubigins (TR) and brightness (TB) in orthodox teas. Sixth international conference on sensing technology (ICST) 23-28.
Ashihara, H., W.W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71: 559-566.
Cao, Y., S.H. Wu, and Y.C. Dai. (2012). Species clarification of the prize medicinal Ganoderma mushroom "Lingzhi". Fungal Divers. 56:49-62.
Da, J., W.Y. Wu, J.J. Hou, H.L. Long, S. Yao, Z. Yang, L.Y. Cai, M. Yang, B.H. Jiang, X. Liu, C.R. Cheng, Y.F. Li, and D.A. Guo. (2012). Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. J. Chromatogr. A 1222:59-70.
Dias, P.M., J. Changarath, A. Damodaran, and M.K. Joshi. (2014). Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J. Agric. Food Chem. 62: 6655-6668.
El-Beih, N.M., G. Ramadan, R.M. Talaat, and E.A. Abd El-Ghffar. (2015). Alleviative effects of green and black tea aqueous extracts on cellular oxidative stress and anemia in rat adjuvant-induced arthritis. Indian J. Tradit. Know. 14:335-343.
Fatima, M. and S.I. Rizvi. (2015). Anti oxidative effect of black tea theaflavin on erythrocytes subjected to oxidative stress. Nati. Acad. Sci. Lett. 38: 25-28.
Food and Agriculture Organization of the United Nations. (2012). Current situation and medium term outlook for tea. http://www.fao.org/fileadmin/templates/est/ COMM_MARKETS_MONITORING/Tea/Documents/IGG_20/12-CRS7-CurrentSit_01.pdf.
Friedman, E.L., S.H. Choi, E. Kozukue, and N. Kozukue. (2006). HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: comparison of water and 80% ethanol/water extracts. J. Food Sci. 71: C328-C337.
Greyling, A., R.T. Ras, P.L. Zock, M. Lorenz, M.T. Hopman, D.H.J. Thijssen, and R. Draijer. (2014). The effect of black tea on blood pressure: a systematic review with meta-analysis of randomized controlled trials. PLoS One 9:103247.
Hong, G., J. Wang, Y. Zhang, D. Hochstetter, S. Zhang, Y. Pan,Y. Shi , P. Xu, and Y. Wang. (2014). Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). Plant Physiol. Biochem.78:49-54.
Jayasekera, S., A.L. Molan, M. Garg, and P.J. Moughan. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chem. 125:536-541.
Jeszka-Skowron, M., M. Krawczyk, and A. Zgoła-Grześkowiak. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J. Food Composit. Anal. 40:70-77.
Jin, J.Q., J.Q. Ma, C.L. Ma, M.Z. Yao, and L. Chen. (2014). Determination of catechin content in representative chinese tea germplasms. J. Agric. Food Chem. 62:9436-9441.
Kim, Y., K.L. Goodner, J. Park, J. Choi, and S.T. Talcott. (2011). Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129:1331-1342.
Koňariková, K., M. Ježovičová, J. Keresteš, H. Gbelcová, Z. Ďuračková, and I. Žitňanová. (2015). Anticancer effect of black tea extract in human cancer cell lines. SpringerPlus 4:127-127.
Kottur, G., S. Venkatesan, R.S.S. Kumar, and S. Murugesan. (2010). Diversity among various forms of catechins and its synthesizing enzyme (phenylalanine ammonia lyase) in relation to quality of black tea (Camellia spp.). J. Sci. Food Agric. 90:1533-1537.
Liu, L.Y., H. Chen, C. Liu, H.Q. Wang, J. Kang, Y. Li, and R.Y. Chen. (2014). Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia 98:254-259.
Mathiyazahan, D.B., A.J. Thenmozhi, and T. Manivasagam. (2015). Protective effect of black tea extract against aluminium chloride-induced Alzheimer's disease in rats: A behavioural, biochemical and molecular approach. J. Funct. Foods 16: 423-435.
Obanda, M., P.O. Owuor, and R. Mang’oka. (2001). Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404.
Owuor, P.O. and M. Obanda. (1998). The changes in black tea quality due to variations of plucking stand and fermentation time. Food Chem. 61:435-441.
Pereira, V.P., F.J. Knor, J.C.R. Vellosa, and F. L. Beltrame. (2014). Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae. Rev. Bras. Plantas Med.16: 490-498.
Perera, G.A.A.R., A.M.T. Amarakoon, D.C.K. Illeperuma, and P.K.P. Muthukumarana. (2015). Effects of raw material on the chemical composition, organoleptic properties, antioxidant activity, physical properties and the yield of instant black tea. LWT-Food Sci. Technol. 63:745-750.
Perva-Uzunalić, A., M. Škerget, Ž. Knez, B. Weinreich, F. Otto, and Sabine Grüner. (2006). Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605.
Samanta, T., V. Cheeni, S. Das, A.B. Roy, B.C. Ghosh, and A. Mitra. (2015). Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 52: 2387-2393.
Scoparo, C.T., D.G. Borato, L.M. Souza, N. Dartora, L.M. Silva, D. Maria-Ferreira, G.L. Sassaki, P.A.J. Gorin, C.H. Baggio, and M. Iacomini. (2014). Gastroprotective bio-guiding fractionation of hydro-alcoholic extracts from green- and black-teas (Camellia sinensis). Food Res. Int. 64:577-586.
Sharma, K., S.S. Bari and H.P. Singh. (2009). Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase. J. Mol. Catal. B-Enzym. 56: 253-258.
Song, R., D. Kelman, K.L. Johns, and A.D. Wright. (2012). Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 133:707-714.
Tay, P.Y., Tan, C.P., Abas, F., Yim, H.S., and C.W. Ho. (2014). Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves. Molecules 19:12304-12319.
Wang, Y., L. Gaob, Y. Shana, Y. Liua, Y. Tianb, T. Xia. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 141:7-16.
Wang, L.Y., K. Wei, Y.W. Jiang, H. Cheng, J. Zhou,W. He, and C.C. Zhang. (2011). Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233:1049-1055.