跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫凭瑋
研究生(外文):Ping-Wei Sun
論文名稱:茶樹葉片活性成分之周年變化及紅茶製程條件對茶湯品質影響之探討
論文名稱(外文):Study on annual variations of active compounds in leaves of tea (Camellia sinensis) and effects of manufacture processes of black tea on infusion quality
指導教授:鄧資新鄧資新引用關係
指導教授(外文):Tzu-Shing Deng
口試委員:林正宏廖成康陳珠亮
口試委員(外文):Jeng-Hung LinCheng-Kang LiaoChu-Liang Chen
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:茶樹周年變化活性成分紅茶靈芝後發酵
外文關鍵詞:Camellia sinensisannual variationsactive compoundsblack teaGanoderma lucidumpost-fermentation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:543
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本論文擬探討台茶12號(小葉種)及台茶18號(大葉種)茶樹於生長箱內不同光照處理及田間茶樹葉片活性成分周年之變化,建立紅茶製程中發酵的最佳條件,且進一步首次嘗試開發以靈芝(BCRC36674)參與後發酵製成富含藥用保健成分之靈芝紅茶。利用高效液相色層分析儀(HPLC)與紫外光/可見光分光比色計來分析不同處理下鮮葉及毛茶樣品中所含的活性物質- 包括咖啡因、兒茶素(C)、沒食子酸(G)、沒食子兒茶素(GC)、表兒茶素(EC)、表沒食子兒茶素(EGC)、表兒茶素沒食子酸酯(ECG)、表沒食子兒茶素酸酯(EGCG)、總多酚及總類黃酮含量,及紅茶茶湯品質指標的茶紅質、明亮度及總色和靈芝紅茶中的總醣及總三萜含量的變化。
在不同光照處理的試驗結果顯示,於光週期(light:dark = 14 h:10 h)、光強度108 µmol/m2s的條件下對所分析活性成分的生合成累積最有利。田間的周年調查發現,鮮葉及紅茶毛茶其活性成分的含量於夏季較高,並在7月達到高峰。在紅茶製程中發酵溫度及時間的不同處理中,兒茶素類含量以22℃ 發酵2 hrs條件下含量最高,隨著發酵時間延長及溫度增高而下降,紅茶茶湯品質則以22℃ 發酵4 hrs條件下最佳。在靈芝(BCRC36674)參與紅茶後發酵的試驗中顯示,隨著後發酵時間的延長兒茶素類含量有下降的趨勢。由於靈芝紅茶茶湯中之總醣在第3個月降低,總三萜在第2個月達到最高約為1.78 mg g-1(DW),此後發酵處理以2個月為最佳的培養條件。
TTES 12 (var. sinensis) and TTES 18 (var. assamica) have been taken as experimental materials in this study to explore active ingredients of tea leaves under different light treatments in growth chamber and its annual variations in field. The better fermentation condition of black tea manufacture processes has been investigated. Furthermore, Lingzhi (Ganoderma) black tea abundant with medicinal /health-caring compounds has been developed the first time through the post-fermentation of primary black tea involved by Ganoderma lucidum (BCRC 36674).
The contents of active ingredients of fresh leaves/primary tea samples- including caffeine, catechin (C), gallic acid (G), gallocatechin (GC), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), total phenolics, total flavonoid; thearubigins, brightness and total colour as indicators of black tea infusion and variations of total sugars and total triterpenes in Lingzhi black tea have been analyzed by HPLC and UV-/Vis spectrophotometer.
Among different light treatments it shows that the biosynthetic accumulation of detected active compounds is most benefit under two light intensities (54 and 108 µmol/m2s) and three photoperiods (light:dark = 10 h:14 h ; 12 h:12 h ;14 h:10 h) condition of photoperiod (light:dark = 14 h:10 h) and 108 µmol/m2s. During annual investigation in field, it has been found that the contents of active ingredients of fresh leaves and primary black tea are higher in summer and peak in July.
For different treatments of fermentation temperatures and times of black tea manufacture processes, the contents of catechins are the highest under the condition of 22℃ and fermentation for 2 hrs and will reduce in proportion to lengthening of fermentation time and temperature increase. The best quality of black tea infusion was obtained under 22℃ and fermentation for 4 hrs.
It reveals that the contents of catechins would decline with time-lengthening of black tea post-fermentation involved by Ganoderma lucidum (BCRC 36674). Owing to decrease of total sugars after 3 months and highest amounts (~1.78 mg g-1 DW) of total triterpenes in Lingzhi black tea infusion, it exhibits that the best cultivation condition of the post-fermentation treatments is 2 months.
中文摘要 i
Abstract iii
總目錄 v
中文表目次 viii
英文表目次 ix
中文圖目次 x
英文圖目次 xv
附錄表目次 xxi
附錄圖目次 xxii
前言 1
前人研究 4
一、茶樹簡介、生產及栽培 4
二、茶樹中活性物質之研究 6
四、紅茶製程條件 9
五、茶葉後發酵之研究 11
材料與方法 13
一、植物材料 13
二、分析試藥與儀器 13
三、建立有效成分HPLC分析之檢量線 14
四、茶樹在不同光條件下之栽培試驗 15
五、茶樹葉片之周年調查 18
六、紅茶製程試驗 21
七、紅茶後發酵處理試驗 24
八、活性成分萃取與分析 26
九、統計方法 34
結果 35
一、茶樹中八種有效成分標準品與檢量線之建立 35
二、茶樹幼苗光栽培條件探討 36
三、茶樹特性與活性成分周年變化 46
四、紅茶製程之探討 53
五、靈芝真菌參與紅茶後發酵之探討 67
討論 74
參考文獻 77
附錄 81
李麗田 (2015)。光對茶樹兒茶素合成的影響。中國農業科學院。碩士論文。
周宜沁 (2014)。聖約翰草有效成分於不同栽培條件下之含量與其微波輔助萃取方法之研究。國立中興大學農藝學系。碩士論文。台中。
劉素強、楊娟、袁林穎、鄔秀宏、李中林 (2005)。烘焙提香條件對紅茶感官品質及主要生化成分的影響。食品安全質量檢測學報6:1301-1306。
Akuli, A., A. Pal, R. Joshi, A. Gulati, T. Dey, and N. Bhattacharyya. (2012). A new method for rapid detection of total colour (TC), theaflavins (TF), thearubigins (TR) and brightness (TB) in orthodox teas. Sixth international conference on sensing technology (ICST) 23-28.
Ashihara, H., W.W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71: 559-566.
Cao, Y., S.H. Wu, and Y.C. Dai. (2012). Species clarification of the prize medicinal Ganoderma mushroom "Lingzhi". Fungal Divers. 56:49-62.
Da, J., W.Y. Wu, J.J. Hou, H.L. Long, S. Yao, Z. Yang, L.Y. Cai, M. Yang, B.H. Jiang, X. Liu, C.R. Cheng, Y.F. Li, and D.A. Guo. (2012). Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. J. Chromatogr. A 1222:59-70.
Dias, P.M., J. Changarath, A. Damodaran, and M.K. Joshi. (2014). Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J. Agric. Food Chem. 62: 6655-6668.
El-Beih, N.M., G. Ramadan, R.M. Talaat, and E.A. Abd El-Ghffar. (2015). Alleviative effects of green and black tea aqueous extracts on cellular oxidative stress and anemia in rat adjuvant-induced arthritis. Indian J. Tradit. Know. 14:335-343.
Fatima, M. and S.I. Rizvi. (2015). Anti oxidative effect of black tea theaflavin on erythrocytes subjected to oxidative stress. Nati. Acad. Sci. Lett. 38: 25-28.
Food and Agriculture Organization of the United Nations. (2012). Current situation and medium term outlook for tea. http://www.fao.org/fileadmin/templates/est/ COMM_MARKETS_MONITORING/Tea/Documents/IGG_20/12-CRS7-CurrentSit_01.pdf.
Friedman, E.L., S.H. Choi, E. Kozukue, and N. Kozukue. (2006). HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: comparison of water and 80% ethanol/water extracts. J. Food Sci. 71: C328-C337.
Greyling, A., R.T. Ras, P.L. Zock, M. Lorenz, M.T. Hopman, D.H.J. Thijssen, and R. Draijer. (2014). The effect of black tea on blood pressure: a systematic review with meta-analysis of randomized controlled trials. PLoS One 9:103247.
Hong, G., J. Wang, Y. Zhang, D. Hochstetter, S. Zhang, Y. Pan,Y. Shi , P. Xu, and Y. Wang. (2014). Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). Plant Physiol. Biochem.78:49-54.
Jayasekera, S., A.L. Molan, M. Garg, and P.J. Moughan. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chem. 125:536-541.
Jeszka-Skowron, M., M. Krawczyk, and A. Zgoła-Grześkowiak. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J. Food Composit. Anal. 40:70-77.
Jin, J.Q., J.Q. Ma, C.L. Ma, M.Z. Yao, and L. Chen. (2014). Determination of catechin content in representative chinese tea germplasms. J. Agric. Food Chem. 62:9436-9441.
Kim, Y., K.L. Goodner, J. Park, J. Choi, and S.T. Talcott. (2011). Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129:1331-1342.
Koňariková, K., M. Ježovičová, J. Keresteš, H. Gbelcová, Z. Ďuračková, and I. Žitňanová. (2015). Anticancer effect of black tea extract in human cancer cell lines. SpringerPlus 4:127-127.
Kottur, G., S. Venkatesan, R.S.S. Kumar, and S. Murugesan. (2010). Diversity among various forms of catechins and its synthesizing enzyme (phenylalanine ammonia lyase) in relation to quality of black tea (Camellia spp.). J. Sci. Food Agric. 90:1533-1537.
Liu, L.Y., H. Chen, C. Liu, H.Q. Wang, J. Kang, Y. Li, and R.Y. Chen. (2014). Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia 98:254-259.
Mathiyazahan, D.B., A.J. Thenmozhi, and T. Manivasagam. (2015). Protective effect of black tea extract against aluminium chloride-induced Alzheimer's disease in rats: A behavioural, biochemical and molecular approach. J. Funct. Foods 16: 423-435.
Obanda, M., P.O. Owuor, and R. Mang’oka. (2001). Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75: 395-404.
Owuor, P.O. and M. Obanda. (1998). The changes in black tea quality due to variations of plucking stand and fermentation time. Food Chem. 61:435-441.
Pereira, V.P., F.J. Knor, J.C.R. Vellosa, and F. L. Beltrame. (2014). Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae. Rev. Bras. Plantas Med.16: 490-498.
Perera, G.A.A.R., A.M.T. Amarakoon, D.C.K. Illeperuma, and P.K.P. Muthukumarana. (2015). Effects of raw material on the chemical composition, organoleptic properties, antioxidant activity, physical properties and the yield of instant black tea. LWT-Food Sci. Technol. 63:745-750.
Perva-Uzunalić, A., M. Škerget, Ž. Knez, B. Weinreich, F. Otto, and Sabine Grüner. (2006). Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605.
Samanta, T., V. Cheeni, S. Das, A.B. Roy, B.C. Ghosh, and A. Mitra. (2015). Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 52: 2387-2393.
Scoparo, C.T., D.G. Borato, L.M. Souza, N. Dartora, L.M. Silva, D. Maria-Ferreira, G.L. Sassaki, P.A.J. Gorin, C.H. Baggio, and M. Iacomini. (2014). Gastroprotective bio-guiding fractionation of hydro-alcoholic extracts from green- and black-teas (Camellia sinensis). Food Res. Int. 64:577-586.
Sharma, K., S.S. Bari and H.P. Singh. (2009). Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase. J. Mol. Catal. B-Enzym. 56: 253-258.
Song, R., D. Kelman, K.L. Johns, and A.D. Wright. (2012). Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 133:707-714.
Tay, P.Y., Tan, C.P., Abas, F., Yim, H.S., and C.W. Ho. (2014). Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves. Molecules 19:12304-12319.
Wang, Y., L. Gaob, Y. Shana, Y. Liua, Y. Tianb, T. Xia. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 141:7-16.
Wang, L.Y., K. Wei, Y.W. Jiang, H. Cheng, J. Zhou,W. He, and C.C. Zhang. (2011). Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233:1049-1055.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊