(18.210.12.229) 您好!臺灣時間:2021/03/05 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳昆展
研究生(外文):Kun-Zhan Wu
論文名稱:於快速衰減通道之次世代適應性MIMO-GFDM接收機
論文名稱(外文):Adaptive MIMO-GFDM receiver over fast fading channel for next generation communications
指導教授:翁芳標翁芳標引用關係
口試委員:鄭立德王忠炫
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:廣義分頻多工 (GFDM)共軛消除 (CC)適應性接收機 (adaptive receiver)載波間干擾 (inter-carrier interference)載波頻率偏移 (CFO)空時區塊碼 (STBC)標準化的最小均方演算法 (NBLMS)
外文關鍵詞:GFDMCCadaptive receiverICICFOSTBCNBLMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在資訊快速傳遞的現代,4G通訊系統已趨近於成熟,而有良好對抗多路徑干擾能力的正交分頻多工技術是最被廣泛利用的方法,但隨著5G通訊系統的到來,物聯網、機器間通訊、感知無線電等多樣化的應用使得正交分頻多工不敷使用,廣義分頻多工 (GFDM) 技術因此被提出,它基於脈衝整形濾波器的架構,有較低的帶外輻射功率,並可以有相對較少的循環前綴(CP),成為5G的候選波型之一,但由於濾波器的架構使得子載波之間非正交,造成嚴重的載波間干擾,並對載波頻率偏移 (CFO) 敏感,為了降低載波間干擾的影響,在傳送端使用兩個路徑的共軛傳輸,並在接收端使用基於相位旋轉共軛消除 (PRCC) 的自適應接收機來建構整個系統,並由最大化載波干擾比來推導出最佳相位旋轉,發展出自適應標準化的最小均方演算法(NBLMS) 去達到理想結果,接收端能有效的追蹤載波頻率偏移在通道的影響和發射端與接收端震盪器間不匹配的變化,且不用把估測資訊回傳到發射端,最後還用空時區塊碼 (STBC) 把系統提升成多輸入多輸出廣義分頻多工(MIMO-GFDM),增加了系統可靠度。模擬結果顯示,在時變通道下,提出的方法有比共軛消除和相位旋轉共軛消除更好的位元錯誤率效能。
Chapter 1 Introduction 1
Chapter 2 Background 6
2.1 Multiple-Input Multiple-Out (MIMO) 6
2.2 Generalized Frequency Division Multiplexing (GFDM) 8
2.3 Spatial Diversity and Spatial Multiplexing 11
2.3.1 Introduce the STBC MIMO-GFDM systems 13
2.4 Major Problems of GFDM 15
2.4.1 Inter-carrier Interference (ICI) 15
2.5 Channel Model 16
2.5.1 Multipath Propagation Effect 17
2.5.2 Slow Fading Channel and Fast Fading Channel 17
2.5.3 Multipath Propagation Effect 18
Chapter 3 Transmitter of MIMO-GFDM system Using Conjugate Transmission 19
3.1 The Transmitter Architecture 19
Chapter 4 Adaptive Receiver Design for ICI Cancellation 23
4.1 The CC and PRCC Scheme 23
4.1.1 Conjugate Cancellation 23
4.1.2 Phase Rotated Conjugate Cancellation 24
4.2 The Proposed Scheme 26
4.2.1 The Receiver Architecture 26
4.2.2 Normalized BLMS Algorithm 30
Chapter 5 Simulation Result 33
Chapter 6 Conclusion 55
Bibliography 56
[1] Y. Ding, Y. Jin, L. Ren, and K. Hao, “An intelligent self-organization scheme for the Internet of things,” IEEE Comput. Intell. Mag., vol. 8, no. 3, pp. 41–53, Aug. 2013.
[2] C. She and C. Yang, “Ensuring the quality-of-service of tactile internet,” in Proc. IEEE VTC Spring, 2016.
[3] G. Fettweis, M. Krondorf, and S. Bittner., “GFDM - Generalized Frequency Division Multiplexing,” in 69th IEEE Vehicular Technology Conference, 2009. VTC Spring 2009, Apr. 2009, pp. 1–4.
[4] J. Van De Beek and F. Berggren, “Out-of-band power suppression in
OFDM,” IEEE Commun. Lett., vol. 12, no. 9, pp. 609–611, Sep. 2008.
[5] Michailow, N.; Matthe, M.; Gaspar, I.S.; Caldevilla, A.N.; Mendes, L.L.; Festag, A.; Fettweis, G. "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks", Communications, IEEE Transactions on, On page(s): 3045 - 3061 Volume: 62, Issue: 9, Sept. 2014.
[6] N. Michailow, I. Gaspar, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized Frequency Division Multiplexing: analysis of an Alternative multi-carrier Technique for Next Generation Cellular Systems,” in Proc. 9th International Symposium on Wireless Communication Systems, 2012.
[7] B. Farhang-Boroujeny and H. Moradi., “Derivation of GFDM based on OFDM principles,” in IEEE Transactions on Communications, Jan 2015.
[8] S. Han, Y. Sung, and Y. H. Lee, “Filter design for generalized frequency division multiplexing,” IEEE Trans. Signal Process., vol. 65, no. 7, pp. 1644–1659. April.2017.
[9] J. Zou, Q. Wu, H. Xiong, and C. W. Chen, “Dynamic spectrum access and power allocation for cooperative cognitive radio networks,” IEEE Trans. Signal Process., vol. 63, no. 21, pp. 5637–5649, Nov. 2015.
[10] Y. Zhao and S.-G. Hぴaggman, “Intercarrier interference self-cancellation
scheme for OFDM mobile communication systems,” IEEE Trans. Commun.,
vol. 49, no. 7, pp. 1185–1191, July 2001.
[11] J. Armstrong, “Analysis of new and existing methods of reducing
intercarrier interference due to carrier frequency offset in OFDM,” IEEE
Trans. Commun., vol. 47, no. 3, pp. 365–369, Mar. 1999.
[12] H.-G. Yeh, Y.-K. Chang, and B. Hassibi, “A scheme for cancelling
intercarrier interference using conjugate transmission in multicarrier
communication systems,” IEEE Trans. Wireless Commun., vol. 6, no.
1, pp. 3–7, Jan. 2007.

[13] C.-L. Wang and Y.-C. Huang, “Intercarrier interference cancellation
using general phase rotated conjugate transmission for OFDM systems,”
IEEE Trans. Commun., vol. 58, no. 3, pp. 812–819, Mar. 2010
[14] C. L. Wang, P. C. Shen, Y. C. Lin, and J. H. Huang, “An adaptive receiver design for OFDM symstem using conjugate transmission,” IEEE Trans. Commun., vol. 61, no. 2, pp. 599–608, Feb. 2013.
[15] M. Tarrab and A. Feuer, “Convergence and performance analysis of
the normalized LMS algorithm with uncorrelated Gaussian data,” IEEE
Trans. Inf. Theory, vol. 34, pp. 680–691, July 1988.
[16] Sher Ali Cheema, Kristina Naskovska, Mohammadhossein Attar, Bilal Zafar, Martin Haardt, “Performance Comparison of Space Time Block Codes for Different 5G Air Interface Proposals ”IEEE Smart Antennas (WSA 2016); Proceedings of the 20th International ITG Workshop on, March 2016.
[17] Ersin Öztürk, Ertugrul Basar, and Hakan Ali Çırpan “Spatial modulation GFDM: A low complexity MIMO-GFDM system for 5G wireless networks” IEEE International,2016.
[18] K. Lee, M. Kang, E.-R. Jeong, D.-J. Park, and Y. H. Lee, “Use of training subcarriers for synchronization in low latency uplink communication with GFDM,” in Proc. IEEE Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2016, pp. 1–6.
[19] A. Farhang, N. Marchetti, and L. E. Doyle, “Low-complexity modem design for GFDM,” IEEE Trans. Signal Processing, vol. 64, no. 6, pp. 1507-1518, Mar. 2016.
[20] M. Danneberg, N. Michailow, I. Gaspar, M. Matthe, D. Zhang, L. L. ´ Mendes, and G. Fettweis, “Implementation of a 2 by 2 MIMO-GFDM Transceiver for Robust 5G Networks,” in Proc. of the Twelfth Int. Symposium on Wireless Commun. Syst. (ISWCS’15), 2015.
[21] A. Ortega and L. Fabbri, “Performance evaluation of GFDM over nonlinear channel,” in 2016 International Conference on Information and Communication Technology Convergence (ICTC), 2016, pp. 12–17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔