跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭景銘
研究生(外文):Ching-Ming Hsiao
論文名稱:電晶體反轉層電子遷移率之TCAD模擬研究:從平面到奈米結構
論文名稱(外文):A TCAD Simulation Study for Electron Mobility in the Inversion Layer of Transistor: From Planer to Nanowire Structure
指導教授:張書通
指導教授(外文):Shu-Tong Chang
口試委員:湯銘李玟頡
口試委員(外文):Ming TangWen-Chieh Li
口試日期:2017-05-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:遷移率
外文關鍵詞:mobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:596
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本論文是研究平面式電晶體到環繞式 (Gate-all-around) 奈米線電晶體的反轉層內電子遷移率的變化。使用維也納大學研究團隊開發的 Global TCAD Solution (GTS) 模擬軟體來研究電晶體的特性。
我們使用等效質量近似 (EMA) 的方法,來模擬通道材料為矽與鍺的平面式電晶體以及奈米線電晶體。在奈米線電晶體的部分,發現晶圓方向為 (001) 矽的通道,[100] 和 [110] 通道方向電子遷移率表現較好,以及在晶圓方向為 (001) 鍺的通道,[110] 通道方向電子遷移率表現最好。
最後做電性模擬的分析,發現 (001) / [100] 通道高度為 4nm 以及寬度為 9nm 的矩形奈米線電晶體有很好的開關比。
A nanowire field-effect transistor (NW FET) with gate-all-around (GAA) gate structure, presents great potential on the application to future transistor technology. In this study, Global TCAD Solution (GTS), developed by a research team in Universität Wien, is utilized for researching the characteristics of the this transistor device.
It is derived from the equations that scatterance reveals positive correlations with density of state, which also appears correlations with electron mobility. Mobility therefore could be calculated, once density of state is acquired.
Different channel directions such as [100], [110], and [111] and the band structure, electron distribution, electron mobility, and electric property of the cross-section of square and circular channels are simulated to discuss the better NMOS nanowire field-effect transistors with the square cross-section of channel along [110] direction.
誌謝 i
中文摘要 ii
Abstract iii
目次 iv
表目錄 ix
第一章 導論 1
1-1 研究動機與背景 1
1-2 文獻回顧 5
第二章 能帶結構 8
2-1 k.p能帶計算及 tight-binding 能帶計算 8
2-1.1 簡介 8
2-1.2 k.p 微擾法 8
2-1.3 電子能帶 10
2-1.4 3D狀態密度 (Density of States) 11
2-1.5 2D狀態密度 (Density of States) 12
2-1.6 1D狀態密度 (Density of States) 13
2-2 矽和鍺材料的能帶模擬 14
2-3 量子侷限的影響 24
第三章 遷移率計算理論 25
3-1 遷移率的推導與傳導有效質量 25
3-2 NFET 散射率公式 27
3-2.1 Optical phonon scattering (ODP) 28
3-2.2 Aptical phonon scattering (ADP) 30
3-2.3 Surface Roughness scattering (SRS) 32
3-3 Schrӧdinger and Poisson Self-consistent 34
第四章 Global TCAD Solutions-VSP 計算矽與鍺的遷移率結果 35
4-1 Global TCAD Solutions-VSP 功能與模型介紹 35
4-2平面電晶體遷移率 37
4-3 奈米線電晶體電子遷移率 40
4-3.1 矽奈米線電晶體電子遷移率 40
4-3.2 鍺奈米線電晶體電子遷移率 46
4-3.3 量子侷限影響 C-V 51
4-3.4 量子侷限影響電子分佈 53
4-4 改變截面的長度或寬度之遷移率 58
4-4.1 矽奈米線電晶體電子遷移率 58
4-4.2 鍺奈米線電晶體電子遷移率 62
4-4電性分析 66
4-4.1 不同通道方向之電性模擬 68
4-4.2 相同截面面積之電性模擬 69
第五章 總結與未來展望 71
5-1 總結 71
5-2 未來與展望 71
參考文獻 74
[1] Kelin J. Kuhn‚“Considerations for Ultimate CMOS Scaling‚” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 7, JULY 2012
[2] Victor Moroz, Joanne Huang, and Reza Arghavani‚ “Transistor Design for 5nm and Beyond: Slowing Down Electrons to Speed Up Transistors‚” IEEE17th Int'l Symposium on Quality Electronic Design‚2016 [3] Byoung Hun Lee,Jungwoo Oh,Hsing Huang Tseng,Rajarao Jammy,and Howard Huff,“Gate stack technology for nanoscale devices,”Elsevier,materialstoday,JUNE 2006,VOLUME 9,NUMBER 6
[4] Neophytos Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck,“Band structure Effects in Silicon Nanowire Electron Transport,”IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 6, JUNE 2008
[5] Yann-Michel Niquet, Christophe Delerue, Denis Rideau, and Brice Videau,“Fully Atomistic Simulations of Phonon-Limited Mobility of Electrons and Holes in <001>-,<110>-,and <111>- Oriented Si Nanowires,”IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 5, MAY 2012
[6] Clive Harris,E.P. O’Reilly*,“Nature of the band gap of silicon and germanium nanowires,”2006 Elsevier PHYSICA E
[7] Gengchiau Liang,“Structure Effects in the gate-all-around Silicon Nanowire MOSFETs”, Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference on
[8] Yijiao Wang, Talib Al-Ameri, Xingsheng Wang, Ewan Towie, Salvatore Maria Amoroso, Binjie Cheng, Saurabh Sinha, Greg Yeric, Robert Aitken, “Simulation Study of the Impact of Quantum Confinement on the Electrostatically Driven Performance of n-type Nanowire Transistors”, IEEE Transactions on Electron Devices ( Volume: 62, Issue: 10, Oct. 2015 )
[9] Tsunenobu Kimoto, Jun Suda, Hajime Tanaka, Seigo Mori, Naoya Morioka, “Phonon-Limited Electron Mobility in Rectangular Cross-Sectional Ge Nanowires”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 6, JUNE 2014
[10] Yann-Michel Niquet, Christophe Delerue, “Carrier mobility in strained Ge nanowires”, JOURNAL OF APPLIED PHYSICS112, 084301 (2012)
[11] Edwin B. Ramayya, Dragica Vasileska,Stephen M. Goodnick, Irena Knezevic,“Electron Mobility in Silicon Nanowires,” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 6, NO. 1, JANUARY 2007
[12] Neophytos Neophytou ,Hans Kosina,Gerhard Klimeck,“A Comprehensive Atomistic Analysis of Band structure Velocities in Si Nanowires,”IEEE Computational Electronics (IWCE), 2010 14th International Workshop on
[13] Abhijeet Paul, Ben Haley, Gerhard Klimeck,“First-Time User Guide: Band Structure Lab,” nanoHUB Network for Computational Nanotechnology
[14] Jean-Pierre Colinge , James C. Greer,“Nanowire Transistors: Physics of Devices and Materials in One Dimension,” 21 Apr 2016
[15] Mehmet O. Baykan,Scott E. Thompson, Toshikazu Nishida,“Strain effects on three-dimensional,two-dimensional,and one-dimensional silicon logic devices: Predicting the future of strained silicon,” JOURNAL OF APPLIED PHYSICS108, 093716 2010
[16] Viktor Sverdlov, Enzo Ungersboeck, Hans Kosina, Siegfried Selberherr,“Effects of Shear Strain on the Conduction Band in Silicon: An Efficient Two-Band k•p Theory,” IEEE Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European
[17] Mathieu Luisier and Gerhard Klimeck,“Phonon-limited mobility and injection velocity in n- and p-doped ultrascaled nanowire field-effect transistors with different crystal orientations,” Electron Devices Meeting (IEDM), 2010 IEEE International
[18] Oskar Baumgartner, Markus Karner, Viktor Sverdlov, and Hans Kosina,“ Electron subband structure in strained silicon UTB films from the Hensel–Hasegawa–Nakayama model – Part 2 efficient self-consistent numerical solution of the k • p schrödinger equation,”ELSEVIER Solid-State Electronics 2010
[19] Yi-Bo Zhang, Lei Sun, Hao Xu, Jing-Wen Han, Yi Wang, and Sheng-Dong Zhang, “Comparative study of silicon nanowire transistors with triangular-shaped cross sections,” Japanese Journal of Applied Physics54, 04DN01 (2015)
[20] Jing Wang, Anisur Rahman, Gerhard Klimeck and Mark Lundstrom,“Bandstructure and Orientation Effects in Ballistic Si and Ge Nanowire FETs,” Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International
[21] N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance,” Electron Devices Meeting, 2006. IEDM '06. International
[22] Isabelle Ferain, Cynthia A. Colinge,Jean-Pierre Colinge, “Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors,” NATURE,VOL 479,17 NOVEMBER 2011
[23] S. Madhavi*, V. Venkataraman, J. C. Sturm, Y. H. Xie, “Low- and high-field transport properties of modulation-doped SiÕSiGe and GeÕSiGe heterostructures: Effect of phonon confinement in germanium quantum wells,” 2000 The American Physical Society
[24] H. Tanaka,N. Morioka, S. Mori, J. Suda, and T. Kimoto,“Quantum-confinement effects on conduction band structure of rectangular cross-sectional GaAs nanowires, ” JOURNAL OF APPLIED PHYSICS115, 053713 (2014)
[25] S. Bangsaruntip, G. M. Cohen, A. Majumdar, Y. Zhang,S. U. Engelmann, N. C. M. Fuller, L. M. Gignac, S. Mittal, J. S. Newbury, M. Guillorn, T. Barwicz, L. Sekaric, M. M. Frank, and J. W. Sleight, “High Performance and Highly Uniform Gate-All-Around Silicon Nanowire MOSFETs with Wire Size Dependent Scaling,” 2009 IEEE IEDM09-297
[26] Kosuke Tatsumura, Masakazu Goto , Shigeru Kawanaka , and Atsuhiro Kinoshita,“Correlation between Low-Field Mobility and High-Field Carrier Velocity in Quasi Ballistic Transport MISFETs scaled down to Lg=30 nm,” 2009 IEEE IEDM09-465
[27] Toshiro Hiramoto, Jiezhi Chen, and Takuya Saraya, “Mobility Enhancement in Silicon Nanowire Transistors,” 2010 10th IEEE International Conference on
[28] Neophytos Neophytou, Abhijeet Paul, Gerhard Klimeck, “Bandstructure Effects in Silicon Nanowire Hole Transport,” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 7, NO. 6, NOVEMBER 2008
[29] Nima Dehdashti Akhavan, Gregory Jolley, Gilberto Antonio Umana-Membreno, Jarek Antoszewski, and Lorenzo Faraone,“Discrete Dopant Impurity Scattering in p-Channel Silicon Nanowire Transistors: A k.p Approach,”IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 2, FEBRUARY 2014
[30] Yann-Michel Niquet,Christophe Delerue, and Christophe Krzeminski, “Effects of Strain on the Carrier Mobility in Silicon Nanowires,” Nano Lett.2012, American Chemical Society
[31] Yao-Jen Lee, Fu-Ju Hou, Shang-Shiun Chuang , Fu-Kuo Hsueh, Kuo-Hsing Kao , Po-Jung Sung, Wei-You Yuan , Jay-Yi Yao , Yu-Chi Lu, Kun-Lin Lin , Chien-Ting Wu , Hisu-Chih Chen, Bo-Yuan Chen , Guo-Wei Huang, Henry J. H. Chen , Jiun-Yun Li , Yiming Li , Seiji Samukawa , Tien-Sheng Chao, Tseung-Yuen Tseng, Wen-Fa Wu, Tuo-Hung Hou, and Wen-Kuan Yeh,“Diamond-shaped Ge and Ge0.9Si0.1 Gate-All-Around Nanowire FETs with Four {111} Facets by Dry Etch Technology,” 2015 IEEE IEDM
[32] Yao-Jen Lee, Guang-Li Luo, Fu-Ju Hou, Min-Cheng Chen, Chih-Chao Yang, Chang-Hong Shen, Wen-Fa Wu, Jia-Min Shieh, and Wen-Kuan Yeh,“Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review,” 2016 IEEE Electron Devices Society
[33] Hajime Tanaka,Jun Suda, Tsunenobu Kimoto,“Analysis of ballistic and quasi-ballistic hole transport properties ingermanium nanowires based on an extended “Top of the Barrier” model,” 2016 Elsevier Solid-State Electronics
[34] O. Badami, D. Lizzit, R. Specogna and D. Esseni,“Surface roughness limited mobility in multi-gate FETs with arbitrary cross-section,” 2016 European Union IEDM
[35] Luca Silvestri, Susanna Reggiani, Elena Gnani, Antonio Gnudi, and Giorgio Baccarani,“ A Low-Field Mobility Model for Bulk, Ultrathin Body SOI and Double-Gate n-MOSFETs With Different Surface and Channel Orientations—Part II: Ultrathin Silicon Films,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 7, JULY 2010
[36] Y.-J. Yang, W. S. Ho, C.-F. Huang, S. T. Chang, and C. W. Liu, “Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect-transistors,” Applied Phys. Lett., vol.91, pp.102103-1-3, January 2007. (SCI)
[37] V. P. Georgiev, T. Ali, Y. Wang, L. Gerrer, S. M. Amoroso,and Asen Asenov,“Influence of quantum confinement effects over device performance in circular and elliptical silicon nanowire transistors,”IEEE Computational Electronics (IWCE), 2015 International Workshop on
[38] 倪澤恩,基礎固態物理 Basic Solid State Physics,五南2011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top