跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾逸群
研究生(外文):Yi-Chun Theng
論文名稱:氧化鋅摻雜鎂薄膜與奈米柱之研究
論文名稱(外文):The study of ZnO thin film and nanorod doped with Mg
指導教授:貢中元貢中元引用關係楊尚霖楊尚霖引用關係
口試委員:施能夫
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:氧化鋅摻雜鎂溶膠凝膠法水熱法薄膜奈米柱感測器
外文關鍵詞:ZnOMg dopedsol-gelhydrothermalthin filmnanorodssensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The purpose of the thesis is to investigate the microstructural, optical, and electronic properties of Mg doped ZnO thin films and nanorods by changing the annealing temperature and doping concentration. ZnO and Mg doped ZnO thin film were fabricated by the sol-gel spin coating method. ZnO and Mg doped ZnO nanorods were synthesized by the hydrothermal method on the pure ZnO seed layer.
The microstructure analysis of X-ray diffraction (XRD) and field-effect scanning electron microscope (FE-SEM) indicates that the increase of the annealing temperature and doping concentration not only enhance the crystallinity of both thin films and nanorods but also make the diffraction peak shift to higher angle. The grain size of the thin films as well as the diameter of the nanorods increase with the increase of annealing temperature. The thickness of the films decreases with increasing Mg doping concentration. As for nanorods, the diameter increases with increasing Mg doping concentration. Observed from PL spectra, the defects decrease in both films and nanorods with increasing annealing temperature due to the crystallization by heat energy. Besides, the defects also decrease in both films and nanorods with increasing Mg doping concentration. The optical energy gap increases as both annealing temperature and Mg doping concentration due to crystallization enhancement and larger energy gap of MgO than that of ZnO.
The electronic properties of the films were defined by the Hall measurements. The increase of annealing temperature leads both carrier mobility and concentration. On the other hand, the carrier concentration makes no obvious different with increasing Mg doping concentration due to the same valence number of Mg and Zn. The photonic application of ZnO nanorods UV photo-detection is defined by the current variation ration denoted as (Iphoto-Idark)/Idark. The increase of annealing temperature causes the increasing current ratio of photo and dark, mainly resulting from the enhancement of nanorods crystallization. The increase of doping concentration results in the increase of energy gap and defect quantity of the nanorods, as well as the decrease of current variation ration.
封面內頁
簽名頁
授權書
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 2
第二章 基礎理論及文獻回顧 3
2-1 氧化鋅簡介 3
2-1-1氧化鋅晶體結構 4
2-1-2氧化鋅的缺陷[42] 5
2-1-3氧化鋅摻雜 6
2-1-4鎂(Mg)、氧化鎂(MgO)與氧化鋅摻雜鎂(Zn1-xMgxO) 6
2-2 溶膠凝膠法(Sol-Gel) 8
2-3 水熱法 9
2-4 快速熱退火 10
2-5 產生亮電流與暗電流差異的機制 11
第三章 實驗方法與儀器介紹 12
3-1 實驗流程圖 12
3-2實驗藥品與材料 14
3-3 基板清潔 14
3-3-1玻璃基板 14
3-3-2 矽基板 15
3-4 薄膜/晶種層的製備過程 15
3-4-1 溶膠凝膠法製作溶液 15
3-4-2 旋轉塗佈法製備薄膜 16
3-4-3 薄膜/晶種層的熱處理 16
3-4-4 奈米柱的成長 18
3-5 量測分析儀器介紹 19
3-5-1 X射線繞射分析儀(X-Ray Diffraction, XRD) 19
3-5-2 FE-SEM場發射掃描式電子顯微鏡 21
3-5-3 Alpha step(膜厚測度儀) 22
3-5-4 UV-VIS-IR光譜儀 22
3-5-5 Photoluminescence 23
3-5-6 霍爾效應量測系統 24
3-5-7電性量測系統(Electrical measurement system) 25
第四章 結果與討論 26
4-1 氧化鋅摻雜鎂薄膜特性分析 26
4-1-1 X光繞射分析 26
4-1-2 SEM顯微結構分析 31
4-1-3 UV-VIS穿透率分析 37
4-1-4 螢光光譜儀分析 42
4-1-5 霍爾量測分析 48
4-2 氧化鋅摻雜鎂奈米柱特性分析 49
4-2-1 X光繞射分析 49
4-2-2 SEM顯微結構分析 52
4-2-3 螢光光譜儀分析 61
4-2-4電性量測 67
第五章 結論 76
參考資料 78
[1]D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai,
H.Khallaf, S. Park, A. Schulte, “Effect of synthesis conditions on the Growth of ZnO nanorods via hydrothermal method”, Physica B 3713.(2008)
[2] 馬遠榮,“奈米科技” ,2002,商周出版。
[3]Zhong L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Adv. Mater. Volume 12, Issue 17, pp.1295–1298 (2000).
[4]K.H. Yoon and J.Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater. Res. Bull 35(2000), pp. 39-46.
[5] Ch. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, Soumya Krishnamoorthy, Agis A. Iliadis, and M. Kompitsas, “Low–Temperature Hydrogen Sensors Based on Au Nanoclusters and Schottky Contacts on ZnO Films Deposited by Pulsed Laser Deposition on Si and SiO2 Substrates” ,IEEE SENSORS JOURNAL, VOL. 7, NO. 3, MARCH 2007,pp. 448-454.
[6] H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering”, J. Crystal Growth 277(2005), pp. 352-358.
[7] K.B. Sundaram and A. Khan, “Characterization and Optimization of Zinc Oxide Films by RF Magnetron Sputtering”, Thin Solid Films 295(1997), pp. 87-91.
[8] M.N. Kamalasanan and Subhas Chandra, “Sol-gel synthesis of ZnO thin films”, Thin Solid Films 288(1996), pp. 112-115.
[9] D. Bao, H. Gu, A. Kuang (1998), “Sol-gel derived c-axis oriented ZnO thin films”, Thin Solid Films 312(1998), pp. 37-39.
[10]Y. Natsume, H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating”, Thin Solid Films 372(2000), pp. 30-36.
[11]A.Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, “ Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices”, Appl. Phys. Lett. 75(1999), pp. 980-982.
[12]J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. zheng, “The growth and annealing of single crystalline znO films by low-pressure MOCVD”, J. Cryst. Growth 243(2002), pp. 151-156.
[13]Z.Zhou, W. Peng, S. Ke, H. Deng, Tetrapod-shaped ZnO whisker and its composites, Journal of Materials Processing Technology,89, pp. 415-418 (1999).
[14]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y.Segawa, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Appl. Phys. Lett.,84, pp.4098-4100 (2004).
[15]S. N. Cha, J. E. Jang, Y. Chio, G. A. J. Amaratunga, Appl. Phys. Lett.89 (2006) 263102.
[16]W. Park, J. S. Kim and G. C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Applied physics letters 85, pp. 5052-5054(2004).
[17]Po-Tsung Hsieh, Study on the Luminescence Characteristics of ZnO Thin Film, National Chung Shan University, Kaohsiung, Taiwan (2008).
[18]M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays byone-step electro chemical deposition technique,Chemical PhysicalLetters, 363,p p.123-126 ( 2002).
[19]B. Lin, Z. Fu, Y. Jia, and G. Liao , Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, J. Electrochem. Soc., 148 , pp. 110-113 (2001).
[20]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt “Mechanisms behind green photoluminescence in ZnO phosphor powders,”J. Appl. Phys., 79, pp. 7983-7990 (1996).
[21]M. S. Arnold, P. Avouris and Z. W. Pan, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts, The Journal of Physical chemistry B 107, pp. 659-663(2003).
[22]Q. Zhao, H. Z. Zhang, Y. W. Zhu and S. Q. Feng,“Morphological effects on the field emission of ZnO nanorod arrays,” Applied physics letters 86, pp. 203115(2005).
[23]陳祥熙,“銅摻雜效應對氧化鋅奈米柱陣列微結構與特性的影響”,碩士論文(2012),中興大學光電工程研究所。
[24]林宥勳,“銀奈米粒子與銀奈米線摻雜於電洞傳輸層應用於高分子發光二極體之元件特性探討”,碩士論文(2013),中正大學工學院機械工程學系。
[25]林彥志,“氧化鋅鋁晶種層對成長氧化鋅鋰奈米柱特性之影響與在紫外光感測器之應用”,碩士論文(2015),中興大學電機工程所。
[26]林宸澂,“摻雜氧化鋅奈米柱之合成與特性及其應用之研究”,博士論文(2012),中興大學電機工程所。
[27]Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag et al., “Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. 83(2003), pp. 3290-3292.
[28]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, “MgxZn1 –xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett. 72(1998), pp. 2466-2468.
[29]X.Fang, J.Li, D.Zhao, D.Shen, B.Li , X.Wang.Phosphorus-Doped p-Type ZnO Nanorods and ZnO Nanorod p−n Homojunction LED Fabricated by Hydrothermal Method. J. Phys. Chem. C, 2009, 113 (50), pp 21208–21212
[30]Y. Li, X. Dong, C. Cheng, X. Zhou, and P. zhang, “Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet”, Phys. B 404(2009), pp. 4282-4285.
[31]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316 , pp. 102–105 (2007).
[32]J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures, Nano Lett. 2, pp. 1287–1291 (2002).
[33]Y. K. Park, A. Umar, E. W. Lee, D. M. Hong, Y. B. Hahn, J.Nanosci. Nanotechnol. 9 (2009) 5745.
[34]S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang,Thin Solid Films 473 (2005) 31.
[35]J. Lin, P. Fei, J. Song, X. Wang, C. Lao, R. Tumala, and Z. L. Wang,Nano Lett. 8.
[36]S. Cho, J. Ma, Y. Kim, Y. Sun, G..K.L. Wong, and J.B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl. Phys. Lett. 759(1999), pp. 2761-2763.
[37]Tsai Chin-Chou, Huang Sheng-Pin, Study of Nitrogen and Aluminum co-doped P-type ZnO Thin Films, International Conference on Safety & Security Management and Engineering Technology (ICSSMET2010)Vol. 2 of 2 (2010).
[38]Zhang Deheng, Zhang Xijian, Wang Qingpu,et al”Luminescence characteristic of ZnMg of film and multiquantum wells and superlattices ” . Chin.J.Lumin, 2004, 25(2) :111-116
[39]Ü.Özgür, Ya.I.Alivov, C.Liu, A.Teke, M.A.Reshchikov, S.Doğan, V.Avrutin, S.J.Cho and H.Morkoç ,"A comprehens ive review of ZnO materials and devices", Appl. Phys. , 98, (2005), P041301.
[40]F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging”, Journal of Applied Physics 95, 4772 (2004).
[41]劉成有,“AxZn1-xO (A:Mg, Cd) 薄膜材料與非線性光學性質”,博士論文(2011),東北師範大學物理化學所。
[42]劉芳佐,“以水熱法製備之氧化鋅奈米桿之氣體感測特性”,碩士論文(2009),國立台灣科技大學化學工程系。
[43]Anderson Janotti, Chris G.. Van de Walle, “New insights into the role of native point defects in ZnO”, J. Crystal Growth 287(2006), pp. 58-65.
[44]Bixia Lin, Zhuxi Fu and Yunbo Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett. 79, pp. 943-945 (2001).
[45]F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka,“Energetics of native defects in ZnO”, J. Appl. Phys. 90(2001), pp.824-828.
[46]D. C. Look, and J. W. Hemsky, “Residual Native Shallow Donor in ZnO”, Phys. Revi. Lett. 82(1999), pp. 2552-2555.
[47]J. Zhao , L. Qin , L.Zhang,” Synthesis of quasi-aligned Si-doped ZnO nanorods on Si substrate” Physica E,40,(2008),pp 795-799
[48]陳致宏,“利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究”,碩士論文(2008), 義守大學材料科學與工程學系。
[49]W.Yang, R.D.Vispute and H.Shen, Appl. Phys. Lett., 82,(2003),P3432.
[50]R. Reisfeld, C. K. Jorgensen, “Chemistry Spectroscopy and Applications of Sol-Gel Glasses”, Springer-Verlag, Berlin, 1992
[51] B. Jirensons et.al, Colloid, Chemistry, New York Co. 1962
[52] K. Vanheusden, C.H. Seager,W.L.Warren, D.R. Tallant, and J.A. Voigt, “Correlation between photoluminescenceand oxygen vacancies in ZnO phosphors”.Appl. Phys. Lett. 68(1996), pp. 403-405.
[53] 徐國偉,“氧化鋅鎵透明導電膜之光電特性與其在氮化鎵上歐姆接觸特性之研究”,碩士論文(2006),國立成功大學光電科學與工程研究所。
[54]DARBHA SURYANARAYANA, LUIS J. MATIENZO, DAVID F. SPENCER,” Behavior of Aluminum Nitride Ceramic Surfaces Under Hydrothermal Oxidation Treatments”, IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, VOL. 12, NO. 4, DECEMBER 1989,pp. 566-570
[55] X. C. Sun, K. Parvin, J. Ly, D. E. Nikles,” Magnetic Properties of a Mixture of Two Nanosized Co–S Powders Produced by Hydrothermal Reduction”, IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 5, SEPTEMBER 2003,pp. 2678-2680
[56] George Angelidis,” Hydrothermal optimal power flow based on hydrothermal decomposition and coordination”, CAN. J. ELECT. & COMP. ENG., VOL. 19, NO. 2, 1994,pp. 81-87
[57] Zahra Rafiee, Ali Mosahebfard, Mohammad Hossein sheikhi,” Synthesis and Preparation of ZnO NW s for Glucose Biosensing”, 25th Iranian Conference on Electrical Engineering (lCEE20 17),pp. 455-460
[58]W.H. J?rgensen , H. Toftlund , T.E. Warner ,”Hydrothermal precipitation of artificial violarite”, Hydrometallurgy ,115-116 (2012) ,pp.98-103
[59]Liang Yu, Changfeng Zeng , Chongqing Wang , Lixiong Zhang ,” In situ impregnationgelationhydrothermal crystallization synthesis of hollow fiber zeolite NaA membrane”, Microporous and Mesoporous Materials 244 (2017) pp.278~283
[60] Pimentel, Ana, et al.,” Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study." Materials 9.4 (2016): 299.
[61] 鄭信民、林麗娟,X光繞射應用簡介,工業材料 (2002).
[62]Wang Xiu-qin, Yuan Ning-yi, Fan Li-ning, and Li Jin-hua, “Influence of Mg2+ Doping on Structure and Optical Property of ZnO Films”, J. Jiangsu Polytechnic University 19(2007).
[63]homepage.ntu.edu.tw/~nlw001/handouts/semiconductor/Ch8_IonImplanta
tion.pdf.
[64]https://www.human-inc.co.jp/sokutei-biz/epma_info.html
[65] http://experiment.phys.nchu.edu.tw/ex3.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top