跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴英哲
研究生(外文):Ying-Che Lai
論文名稱:輪型全方位移動多機器人的模糊稀疏增廣型訊息濾波器同步定位及地圖建立
論文名稱(外文):Fuzzy SEIF SLAM of Wheeled Omnidirectional Mobile Multirobots
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
口試委員:林惠勇徐元寶
口試日期:2017-01-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:模糊稀疏增廣型訊息濾波器同步定位及地圖建立輪型全方位機器人多機器人
外文關鍵詞:fuzzySEIFSLAMWheeled omnidirectional mobile robotmultirobots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出以ROS軟體框架發展的三輪全方位移動多機器人的模糊稀疏增廣型訊息濾波器同步定位及地圖建立方法。以ROS為基礎的行動機器人實驗中,進行讀取雷射測距器的數據、慣性量測單元及三輪的里程訊息,用以進行機器人位置及方向的估測。本文提出一個創新的模糊稀疏擴展型訊息濾波同步定位及地圖(FSEIF SLAM) 方法,利用兩個簡單的模糊邏輯規則,用以調整機器人感測器的量測距離及角度,進而達成同步定位及地圖。接著定義三種里程計的誤差,用以進行評估所提出的FSEIF SLAM性能。四種比較性的模擬說明所提出的FSEIF SLAM相對於已存在SEIF SLAM及EKF SLAM,有其效能及優越性。最後提出一個合作式的模糊增廣型訊息濾波器同步定位及地圖方法,針對群組行動多說明機器人,結合K-means及Dijkstra演算法,在已知的地圖及相對關係中進行最佳路徑規劃,達成更有能效的地同步定位及地圖技術。比較性模擬結果說明比較性模擬結果闡述合作式的模糊增廣型訊息濾波器同步定位及地圖的效用性,及其適用於大範圍環境的可行性。
The thesis presented for a fuzzy sparse extended information filtering (FSEIF) method for simultaneous localization and mapping SLAM) of three-wheeled omnidirectional mobile multirobots with the robotic operating system (ROS) software framework. In the experimental ROS-based mobile robot, the ROS frame reads the readings of the used laser scanner, IMU sensor and odometry amounted on the three driving wheels, in order to estimate the robot’s position and orientation. A novel fuzzy SEIF SLAM (FSEIF SLAM) algorithm is proposed with two simple fuzzy logic rules to adjust the measured distance ranges and angles of the on-board ranging sensors. Three odometric errors are defined to evaluate the performance of the proposed FSEIF SLAM method. Through four comparative simulations, the proposed FSEIF SLAM method is shown effective and superior in comparison with existing SEIF SLAM and EKFSLAM. A cooperative Fuzzy SEIF SLAM approach is presented for a group of omnidirectional mobile multirobots, where the optimal path searching method is devised by incorporating with K-means and Dijkstra algorithm under the assumption of known map and correspondence conditions. The effectiveness and merits of the proposed cooperative FSEIF SLAM in a large-scale environment are well illustrated by carrying out comparative simulations made by multiple mobile robots.
中文摘要 i
Abstract ii
Contents iii
List of Figures vii
List of Tables x
Nomenclature xi
List of Acronyms xii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Literature Survey 3
1.2.1 Related Work on SLAM for Mobile Robots 3
1.2.2 Related Work on SEIF for Mobile Robots 4
1.2.3 Related Work on ROS for Mobile Robots 5
1.3 Motivation and Objectives 7
1.4 Main Contributions 7
1.5 Thesis Organization 8
Chapter 2 Mechatronic Description of the Experimental ROS-Based Omnidirectional Mobile Robot 10
2.1 Introduction 10
2.2 System Structure and Mechatronic Design 11
2.3 Kinematic Model of the Omni-directional mobile Robot 14
2.4 Description of Key Components 16
2.4.1 Laser ranger finder – RPLIDAR A2M8 16
2.4.2 Raspberry pi 3 18
2.4.3 Arduino UNO 19
2.4.4 IMU-JY901 20
2.4.5 Dynamixel MX64-AR 21
2.4.6 Power convertor 22
2.4.7 Motion Controller of the Dynamixel 23
2.5 Building ROS Software Framework 24
2.5.1 Introduction to ROS 25
2.5.2 Robot Operating System Establishment 25
2.5.3 ROS Framework 27
2.5.4 Navigation stack of ROS 31
2.5.5 Hector SLAM 32
2.6 Experimental Results and Discussion 34
2.6.1 Laser Line Extraction Method and Corner Extraction Method 34
2.6.2 IMU sensor in ROS 36
2.6.3 Integrating Sensing Data in ROS 37
2.7 Chapter Summaries 38
Chapter 3 39
3.1 Introduction 39
3.2 SEIF SLAM 40
3.2.1 Introduction to SEIF SLAM 40
3.2.2 Sparsification Processing of the SEIF SLAM 40
3.2.3 Sparsification Analysis of the SEIF SLAM 42
3.3 FSEIF-SLAM 43
3.3.1 FSEIF SLAM algorithm process 45
3.4 Dead-Reckoning Method and Odometry Errors 47
3.4.1 Odometry errors 48
3.4.2 Error functions 49
3.5 Simulations and Discussion 50
3.5.1 Simulation 1: Extra noise 51
3.5.2 Simulation 2: SLAMs Comparison in term of RMSE 55
3.6 FSEIF SLAM Experiment 57
3.7 Chapter Summary 63
Chapter 4 Cooperative FSEIF SLAM of Omnidirectional Mobile Multirobots 65
4.1 Introduction 65
4.2 Optimal the Path Plan 66
4.2.1 K-means clustering 67
4.2.2 The shortest path – Dijkstra’s algorithm 67
4.2.3 Shortest Path Planning 69
4.3 Cooperative FSEIF SLAM for Multirobots 70
4.3.1 Sub-Map Merging Method 70
4.3.2 Cooperation Simulation 1 –Star Diagram 71
4.3.3 Cooperation Simulation 2 - Heart diagram 74
4.3.4 Cooperative Fuzzy SEIF SLAM 77
4.3.5 Discussion 79
4.4 Chapter Summaries 80
Chapter 5 Conclusions and Future Work 81
5.1 Conclusions 81
5.2 Future Work 82
References 84
[1]L. E. Parker, "Distributed intelligence: overview of the field and its application in multi-robot systems," Journal of Physical Agents, Vol. 2, No. 1, pp. 1-14, March 2008.
[2]A. Garulli, A. Giannitrapani, A. Rossi and A. Vicino , "Mobile robot SLAM for line-based environment representation," In Proc. of Decision and Control, 2005 and 2005 European Control Conference, Seville, Spain, pp. 2041-2046, 2005.
[3]S. Thrun, W. Burgard, and D. Fox, "A probabilistic approach to concurrent mapping and localization for mobile robots," Machine Learning and Autonomous Robots (joint issue), pp. 1-25, 1998.
[4]S. Thrun, W. Burgard, and D. Fox, "A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping," In Proc. of IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA , Vol. 1, pp. 321-328, April 2000.
[5]F. Dellaert, W. Burgard, D. Fox, and S. Thrun, "Using the condensation algorithm for robust, vision-based mobile robot localization," In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’99), Fort Collins, CO, Vol. 2, pp. 594, June 1999.
[6]J. Gutmann, and K. Konolige, "Incremental mapping of large cyclic environments," In Proc. of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 318-325, November 1999.
[7]R. Sim, and G. Dudek, "Learning and evaluating visual features for pose estimation,", In Proceedings of the Seventh International Conference on Computer Vision (ICCV’99), Kerkyra, Greece, Vol. 2, pp. 1217-1222, September 1999.
[8] A. J. Davison, Mobile Robot Navigation Using Active Vision, Ph.D thesis, Department of Engineering Science, University of Oxford, 1998.
[9]J. Knight, A. Davison, and I. Reid, "Towards constant time slam using postponement," In Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, Hawaii, Vol. 1, pp.405-413, October 2001.
[10]S. Se, D. Lowe, and J. Little, "Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks," The International Journal of Robotics Research, Vol. 21 No. 28, pp. 735-758, 2002.
[11]S. Thrun, W. Burgard, D. Fox, Probabilistic robotics, the MIT Press, Cambridge, Massachusetts, 2006.
[12]S. Thrun , Y. Liu, D Koller, A. Y. Ng, Z. Ghahramani and H. Durrant-Whyte, "Simultaneous localization and mapping with sparse extended information filters." International Journal of Robotics Research, Vol. 23, No.7 pp.693-716, 2004.
[13]P. S. Maybeck, "Stochastic Models, Estimation, and Control," Academic Press, Vol. 1, 1979.
[14]Matthew R. Walter, Ryan M. Eustice, and John J. Leonard, "Exactly Sparse Extended Information Filters for Feature-Based SLAM," International Journal of Robotics Research, Vol. 26, No. 4, pp.335-359, April 2007.
[15]J. H. Gauo and C. X. Zhao, "An Improved Algorithm with Sparse Extended Information Filters," Pattern Recognition and Artificial Intelligence, Vol. 22 , No. 2, pp. 269-269, 2009.
[16]H. H. Lin and C. C. Tsai, "Ultrasonic Localization and Pose Tracking of an Autonomous Mobile Robot via Fuzzy Adaptive Extended Information Filtering," IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 9 pp. 2024-2034, 2008.
[17]F.C. Tai and C. C. Tsai, "Decentralized EIF-based global localization using dead-Reckoning, KINECT and laser scanning for autonomous omnidirectional mobile robot," in Proc. of 2014 International Conference on Advanced robotics and intelligent systems (ARIS 2014) ,Taipei Taiwan, pp. 85 – 90, 2014.
[18]R. Eustice, M. Walter, and J. Leonard, "Sparse Extended Information Filters Insights into Sparsification," In Proc. of the IEEE/RSJ Interactional Conference on Intelligent Robots and Systems Edmonton, Canada, pp. 3281-3288, 2005.
[19]A. Araújo, , D. Portugal, M. S. Couceiro, et al., "Integrating Arduino-based Educational Mobile Robots in ROS." In Proc. of 2013 13th International Conference on Autonomous Robot Systems, Lisbon, Portugal. pp.281-298, 2015.
[20]M. S. Couceiro, C. M. Figueiredo, J. M. Luz, N.M. F. Ferreira, and R.P. Rocha, "A Low-Cost Educational Platform for Swarm Robotics", Int. Journal of Robots, Education and Art, Vol. 2, pp. 1-15, Feb 2012.
[21]I. W. Park and J. O. Kim, "Philosophy and Strategy of Minimalism- based User Created Robots (UCRs) for Educational Robotics - Education, Technology and Business Viewpoint," International Journal of Robots, Education and Art, Vol. 1, No. 1, 2011.
[22]M. Kuipers, "Localization with the iRobot Create," In Proc. of the 47th Annual Southeast Regional Conference ACM (ACM-SE 47), Clem son, South Carolina, USA, pp. 1-3, March 19-21, 2009.
[23]B. Bagnall, Maximum LEGO NXT: Building Robots with Java Brains, Variant Press, 2007.
[24]F. Mondada, et al., “The e-puck, a Robot Designed for Education in Engineering”. In Proc. of the 9th Conf. on Autonomous Robot Systems and Competitions, Castelo Branco, Portugal, Vol. 1, pp. 59-65 2009.
[25]Bonani, et al, "The MarXbot, a Miniature Mobile Robot Opening new Perspectives for the Collective-Robotic Research," In proc. of Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, pp. 4187-4193, Oct. 18-22 2010.
[26]H. C. Huang and C. C. Tsai, "FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform," IEEE Trans. on Industrial Electronics, Vol. 56, No. 5, pp. 1604-1616, May 2009.
[27]L Joseph, Mastering ROS for Robotics Programming, PACKT Press, December 21, 2015
[28]http://wiki.ros.org/navigation/Tutorials/RobotSetup
[29]S Kohlbrecher, O Von Stryk, J Meyer, U Klingauf, "A flexible and scalable slam system with full 3d motion estimation" In Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on ,Kyoto,Japan pp.155-160, November 2011
[30]F. C. Tai and C. C. Tsai, "Decentralized EIF-based global localization using dead-Reckoning, KINECT and laser scanning for autonomous omnidirectional mobile robot," in Prof. of 2014 International Conference on Advanced robotics and intelligent systems (ARIS 2014) ,Taipei, Taiwan, pp. 85-90, 2014.
[31]J. Borenstein and L. Feng, "Measurement and Correction of Systematic Odometry Errors in Mobile Robots," IEEE Transactions on Robotics and Automation, Vol. 12, No 6, pp. 869-880, December 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top