|
[1]CCSDS Recommendations and reports, blue book, image data compression recommended standard, 122.0-B-1, Nov. 2005 [2]CCSDS Recommendations and reports, green book, image data compression information report, 122.1-G-2, Feb. 2015 [3]Lian, C. J., Chen, K. F., Chen, H. H., & Chen, L. G. (2003). Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Transactions on circuits and systems for video technology, 13(3), 219-230.. [4]Fang, H. C., Chang, Y. W., Wang, T. C., Huang, C. T., & Chen, L. G. (2006). High-performance JPEG 2000 encoder with rate-distortion optimization. IEEE Transactions on Multimedia, 8(4), 645-653. [5]Chang, Y. W., Chen, C. C., Chen, C. C., Fang, H. C., & Chen, L. G. (2006, October). Design and Implementation of JPEG 2000 Codec with Bit-Plane Scalable Architecture. In Signal Processing Systems Design and Implementation, 2006. SIPS'06. IEEE Workshop on (pp. 428-433). IEEE. [6]Lu, Y., Lei, J., & Li, Y. (2012, December). An efficient VLSI architecture of parallel bit plane encoder based on CCSDS IDC. In Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific (pp. 1-4). IEEE. [7]Gu, X., Wang, H., Zhang, X., & Xu, S. (2009, July). Design and implementation of image compression core based on CCSDS algorithm. In Computer Science & Education, 2009. ICCSE'09. 4th International Conference on (pp. 1873-1876). IEEE. [8]Lai, Y. K., Chen, L. F., & Shih, Y. C. (2009). A high-performance and memory-efficient VLSI architecture with parallel scanning method for 2-D lifting-based discrete wavelet transform. IEEE Transactions on Consumer Electronics, 55(2), 400-407. [9]Liao, H., Mandal, M. K., & Cockburn, B. F. (2004). Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Transactions on Signal Processing, 52(5), 1315-1326. [10]Chrysafis, C., & Ortega, A. (2000). Line-based, reduced memory, wavelet image compression. IEEE Transactions on Image processing, 9(3), 378-389. [11]Huang, C. T., Tseng, P. C., & Chen, L. G. (2005). Generic RAM-based architectures for two-dimensional discrete wavelet transform with line-based method. IEEE Transactions on Circuits and Systems for Video Technology, 15(7), 910-920. [12]Andra, K., Chakrabarti, C., & Acharya, T. (2002). A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Transactions on Signal Processing, 50(4), 966-977. [13]Huang, C. T., Tseng, P. C., & Chen, L. G. (2002). Efficient VLSI architectures of lifting-based discrete wavelet transform by systematic design method. In Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on (Vol. 5, pp. V-V). IEEE. [14]Huang, C. T., Tseng, P. C., & Chen, L. G. (2004). Flipping structure: An efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Transactions on signal processing, 52(4), 1080-1089. [15]Wu, B. F., & Lin, C. F. (2005). A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec. IEEE Transactions on circuits and systems for video technology, 15(12), 1615-1628. [16]Lan, X., Zheng, N., & Liu, Y. (2005). Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE transactions on consumer electronics, 51(2), 379-385. [17]Saidani, T., Atri, M., Said, Y., & Tourki, R. (2012, March). Real time FPGA acceleration for discrete wavelet transform of the 5/3 filter for JPEG 2000. In Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 2012 6th International Conference on (pp. 393-399). IEEE.
|