跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝肇恩
研究生(外文):Chao-En Hsieh
論文名稱:最小誤差勒壤得擬譜補償法之浦松方程計算格式
論文名稱(外文):Error minimized Legendre Pseudospectral schemes for Poisson equation
指導教授:鄧君豪
指導教授(外文):Chun-Hao Teng
口試委員:曾昱豪胡偉帆
口試委員(外文):Yu-Hau TsengWei-Fan Hu
口試日期:2017-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:27
中文關鍵詞:勒壤得擬譜補償法浦松方程計算格式誤差最小化
外文關鍵詞:Legendre Pseudospectral penalty formulationschemes for Poisson equationerror minimized
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們將以Legendre 擬譜補償法( pseudospectral penalty formulation) 建立格式,來求解定義在直角坐標中的Poisson 微分方程式之數值解,並使得數值解的L2 誤差值為最小。我們將這樣的計算方式撰寫成程式,並做數值實驗。由實驗結果得知的確與理論分析吻合,並且比傳統上使用強制性邊界條件(strongly enforced boundary condition) 的方式更能得到精確的數值解。此外,我們也將此方法與使用Chebyshev 擬譜補償式建立格式的方法作比較。
In this thesis, we present a scheme based on Legendre pseudospectral penalty formulation for solving Poisson equation’s numerical solution, and make the numerical solution of L2 error be minimized. We conducted this calculation to be programs, and executive numerical experiments. The result of experiments tallies with the theoretical analysis, and it is better accuracy than the traditional strongly enforced boundary condition. Moreover, we compared this method with the format by Chebyshev pseudospectral penalty formulation.
誌謝辭................................................. i
中文摘要.............................................. ii
Abstract............................................. iii
目錄.................................................. iv
圖表目次................................................ v
壹、簡介................................................ 1
貳、Poisson 邊界值問題與擬譜補償函數式的模型.............. 3
一、Poisson 方程式與其邊界條件........................... 3
二、誤差值最小化........................................ 4
參、將解法推廣至多維度.................................. 11
一、二維空間的Poisson 方程式與其邊界條件................. 11
二、數值上的驗證....................................... 13
肆、結論.............................................. 15
參考文獻.............................................. 16
附錄:補償參數值τ±之推導過程............................ 18
[1] D. Funaro, D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Math. Comput. 51(1988)599-613.
[2] Tzyy-Leng Horng, Chun-Hao Teng, An error minimized pseudospectral penalty direct Poisson solver, J. Comput. Phys. vol. 231, no.6, pp. 2498-2509, Mar. 2010.
[3] D. B. Haidvogel, T. Zang, The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J.Comput. Phys. 30(1979)167-180.
[4] D. Gottlieb, S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, 1977.
[5] H. Dang-Vu, C. Delcarte, An accurate solution of the Poisson equation by the Chebyshev collocation method, J. Comput. Phys. 104 (1993) 211–220.
[6] J. Shen, Efficient spectral-Galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials, SIAM J. Sci. Comput. 16(1995)74-87.
[7] J. Shen, L.-L. Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys. 5 (2009) 195–241.
[8] H.C. Ku, R.S. Hirsh, T. Taylor, A pseudospectral method for solution of the threedimensional
incompressible Navier–Stokes equations, J. Comput. Phys. 70 (1987) 462–493.
[9] U. Ehrenstein, R. Peyret, A Chebyshev collocation method for the Navier–Stokes equations with application to double-diffusive convection, Int. J. Number. Methods
fluids 9(1989)427-452.
[10] H. Chen, Y. Su, B.D. Shizgal, A direct spectral collocation Poisson solver in polar and cylinder coordinates, J. Comput. Phys. 160 (2000) 453–469.
[11] J.S. Hesthaven, Spectral penalty methods, Appl. Numer. Math. 33 (2000) 23–41.
[12] M.C. Navarro, H. Herrero, S. Hoyas, Chebyshev collocation for optimal control in a thermoconvective flow, Commun. Comput. Phys. 5 (2009) 649–666.
[13] C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top