|
[1] D. Funaro, D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Math. Comput. 51(1988)599-613. [2] Tzyy-Leng Horng, Chun-Hao Teng, An error minimized pseudospectral penalty direct Poisson solver, J. Comput. Phys. vol. 231, no.6, pp. 2498-2509, Mar. 2010. [3] D. B. Haidvogel, T. Zang, The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J.Comput. Phys. 30(1979)167-180. [4] D. Gottlieb, S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, 1977. [5] H. Dang-Vu, C. Delcarte, An accurate solution of the Poisson equation by the Chebyshev collocation method, J. Comput. Phys. 104 (1993) 211–220. [6] J. Shen, Efficient spectral-Galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials, SIAM J. Sci. Comput. 16(1995)74-87. [7] J. Shen, L.-L. Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys. 5 (2009) 195–241. [8] H.C. Ku, R.S. Hirsh, T. Taylor, A pseudospectral method for solution of the threedimensional incompressible Navier–Stokes equations, J. Comput. Phys. 70 (1987) 462–493. [9] U. Ehrenstein, R. Peyret, A Chebyshev collocation method for the Navier–Stokes equations with application to double-diffusive convection, Int. J. Number. Methods fluids 9(1989)427-452. [10] H. Chen, Y. Su, B.D. Shizgal, A direct spectral collocation Poisson solver in polar and cylinder coordinates, J. Comput. Phys. 160 (2000) 453–469. [11] J.S. Hesthaven, Spectral penalty methods, Appl. Numer. Math. 33 (2000) 23–41. [12] M.C. Navarro, H. Herrero, S. Hoyas, Chebyshev collocation for optimal control in a thermoconvective flow, Commun. Comput. Phys. 5 (2009) 649–666. [13] C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.
|