|
[1] Y. Yao, A Mathematical Introduction to Data Science, School of Mathematical Sciences, Peking University, Beijing, China, October 14, 2014. [2] T. Y. Chen, GPU accelerate framework on variant LLE dimension reduction algorithm, May, 2010. [3] H. D. Wu, S. Y. Chou, D. R. Chen, and H. W. Kuo, Differentiation of serum levels of trace elements in normal and malignant breast patients, Biological Trace Element Research 113(1), January, 2006, 9-18. [4] M. Franke, Project report: LLE–Locally linear embedding, Faculty of Electrical Engineering , Technion–Israel Institute of Technology, Haifa, 2014. [5] T. Liu, C. Xia, Y. Wang, and J. Xu, Classifying syndromes in traditional Chinese medicine based on Isomap-SVM, 2012 IEEE International Conference on BioMedical Engineering and Informatics, October, 2012. [6] K. M. Zheng, X. Qian, and P. C. Wang, Dimension reduction in intrusion detection using manifold learning, 2009 International Conference on Computation Intelligence and Security, December, 2009, 464-468. [7] O. Kayo, Locally Linear Embedding Algorithm Extensions and Applications, Faculty of Technology, University of Oulu, April, 2006. [8] M. Belkin, and P. Niyogi, Laplacian eigenmaps for dimension reduction and data representation, Neural Computation, v.15 n.6, June, 2003, 1385-1388. [9] Y. L. Zheng, T. P. Zheng, B. Fang, and Y. Y. Tang, Discriminant isomap projection, 2009 International Conference on Wavelet Analysis and Pattern Recognition, July, 2009, 144-147. [10] L. Huang, L. Zheng, C. Chen, and M. Lu, Locally linear embedding algorithm with adaptive neighbors, 2009 International Workshop on Intelligent Systems and Applications, May, 2009, 1-4. [11] L. Ziegelmeier, M. Kirby, and C. Peterson, Sparse locally linear embedding, International Conference on Computational Science, June, 2017, 635-644. [12] Laurens van der Maaten, and E. Postma, Dimensionality reduction: A comparative review, Technical Report TiCC-TR 2009-005, Tilburg University, Tilburg, The Netherlands, 2009. [13] B. Yang, M. Xiang, and Y. Zhang, Learning discriminant isomap for dimensionality reduction, 2015 International Joint Conference on Neural Networks, July, 2015, 1-8. [14] Lawrence K. Saul, and Sam T. Roweis, An introduction to locally linear embedding, 2000. [15] S. E Straus, W. Scott Richardson, P. Glasziou, and R. B. Haynes, Evidencebased medicine: How to practice and teach EBM, 2005. [16] http://www.cs.nyu.edu/ roweis/lle/code.html [17] D. M. Busby, C. Christensen, D. Russell Crane, and J. H. Larson, A revision of the dyadic adjustment scale for use with distressed and non-distressed couples: Construct hierarchy and multidimensional scales, July, 1995. [18] D. L. Donoho, and C. Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, March, 2003. [19] O. Kaynak, E. Alpaydin, E. Oja, and L. Xu, Supervised locally linear embedding, June, 2003. [20] C. Y. Liou, and Y. T. Kuo, Economic states on neuronic maps, 9’th International Conference on Neural Information Processing, ICONIP’2002, vol.2, Nov, 2002, Singapore, 787-791. [21] http:// health99.hpa.gov.tw/ Article/ ArticleDetail.aspx? TopIcNo=846DS=1-life [22] E. Osuna, R. Freund, and F Girosi, Support vector machines: Training and applications, A.I. Memo 1602, MIT Artificial Intelligence Laboratory, March, 1997.
|