參考文獻
中文部分:
王昭明(1988)解題歷程研究法,有聲思考法簡介。臺灣教育,512,53-57。王毓玲(2015)大台中地區國中一年學生一元一次方程式應用題的解題歷程分析(未出版之碩士論文)。國立中興大學,台中市。吳勇賜(2007)數學解題的研究。臺北縣立福營國中。
宋啟玉(2012)高雄地區國中三年學生二次函數求極值解題歷程之分析(未出版
之碩士論文)。國立高雄師範大學,高雄市。
李銘芷(2012)高雄市高一學生組合問題解題歷程之研究分析(未出版之碩士論文),國立高雄師範大學,高雄市。林雅柔(2016)大台中地區國中三年級學生二次數學文字題的解題歷程分析(未出版之碩士論文),國立中興大學,台中市。林清山、張景媛(1993)國中生後設認知、動機信念與數學解題策略之關係研究。教育心理學報,26,53-74。邱琬婷(2002)國民中學數學低成就與國文低成就學生數學解題歷程與錯誤類型之分析(未出版之碩士論文)。國立彰化師範大學,彰化市。胡炳生(1997),數學解題思維方法。臺北市:九章出版社。
孫達剛(1992)雄中、雄女學生數學解題之研究Polya解題四階段論取向(未出版之碩士論文)。國立高雄師範大學,高雄市。涂金堂(1992)。數學解題之探究。研習資訊,13巻2期,60-65。
涂金堂(2000)知識結構的評量與改變之研究-以國小學生數學文字題為例(未出版之碩士論文)。國立政治大學,臺北市。張春興(2001)教育心理學。臺北市:東華書局。
張景媛(1994)數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣
師範大學教育心理與輔導學系教育心理學報,27,175-200。
張家豪(2016)台中地區某高職在三角函數基本定義及廣義角三角函數之錯誤類型研究(未出版之碩士論文)。國立中興大學,台中市。曹榮鑑(2011)高中學生指數與對數文字應用題解題歷程之分析研究(未出版之碩士論文)。國立中興大學,台中市。郭政良(2015)國中數理資優生在排列組合單元的解題歷程分析(未出版之碩士論文)。國立台灣師範大學,台北市。陳哲仁(2003)九年一貫國二學生解一元二次方程式應用問題歷程之分析研(未出版之碩士論文)。國立高雄師範大學,高雄市。麥順發(2007)彰化地區高中學生數列與級數單元錯誤類型之分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。黃俊銘(2016)大考中心數學應用題解題歷程分析- 以彰化地區某高中為例(未出版之碩士論文)國立中興大學,台中市。。黃敏晃(1991)淺談數學解題。教與學,23期,2-15。劉秋木(1996)。國小數學科教學研究。臺北市:五南出版社。
劉貞宜(2000)。數學解題歷程分析。建中學報,6,163-187劉貞宜(2000)數學資優生的解題歷程分析(未出版之碩士論文)。國立台灣師範大學,臺北市。
劉鍚麒(1989)國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報,3期,23-90。
劉鍚麒(1997)數學思考教學研究。臺北市:師大書苑。
蔡坤憲(譯)(2006)怎樣解題(原作者:G.Polya)。台北市:天下遠見。
蔡承哲(1996)高雄地區高二學生空間向量之解題歷程分析研究(未出版之碩士論文)。國立高雄師大學,高雄市。蔡啟禎(2004)國小中年級資優生數學解題歷程分析(未出版之碩士論文),國立中山大學,高雄市。鄭文彬(2003)英語實驗班之數學解題歷程分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。鄭毓信(1993)問題解題與數學教育。數學傳播,17巻4期,1-13。 英文部分:
Anderson, M. A. (1986). Protocol analysis : A methodology for exploring the information processing of gifted students. Gifted Children Quarterly, 30 (1), 28-32.
Bloom, B. & Bbroder, L. (1950). Problem-solving process of college students. Chicago: The University of Chicago Press.
Catherall, R. W. (1981). Children’s beliefs about the human circulatory system: an aid for teachers regarding the role intuitive beliefs ploay in the development of formal concepts in 7-14 years olds. Report No. 82-16 Educational Research Institute of British Columbia, Vancouver,B.C.
Charles, R. I. (1985). The role of problem solving, Arithmetic Teacher.32(6) 48-50.
Davis, R. B. (1984). Learning mathematics. The Cognitive science approach to mathematics education. Nowood, New Jersey: Ablex Publishing corporation.
Ericsson, K. A. & Simon, H. A. (1980). Verbal reports as data. Psychological Review 87(3),215-252.
Gagne, R.M. (1985). The cognitive psychology of school learning. Brown and Company: Boston.
Ginsburg, H. P., Kossan, N. E., Schwartz, R. & Swanson, D., (1983). Protocol methods in research on mathematical thinking, In H. P. Ginsburg (Ed.), The Development of Mathematical Thinking. Orlando, Florida: Academic Press, Inc.
Hayes, J. R. (1989). The complete problem solver. Hillsdale, NJ: Lawrence Erlbaum Associates.
Kilpatrick, J. (1967). Problem solving in mathematics. Review of Educational Research, 39,523-534
Kilpatrick, J. (1985). A restrospective account of the past 25 years of research and learning mathematical problem solving. In E. Sliver (Ed.) Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: Lawrece Eribaum Associates.
Kilpatrick, J. (1985). A retrospective account of the past 25 year of research on teaching mathematical problem solving. In Silver, E. A. (Ed.), Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives.
Krutestskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago.
Larkin, J. H. & Reif , F. (1976). Understanding and teaching problem solving in physics. European Journal of Science Education, 2, 191-203, Apr Jun.
Lester, F. K. (1980). Research on mathematical problem solving. In R.J. Shumway (Ed.), Research in mathematics education, 286-323, Reston, VA: NCTM.
Lester, F. K. (1989). The role of metacognition in mathematical problem solving: A study of two grades seven classes. (ERIC No. ED 314225).
Mayer, R. E. (1985). Implications of cognitive of psychology for instruction in mathematical problem solving. In A. Sliver(Ed.) Teaching and learning mathematical problem solving: Multiple Research Perspectives. Hallsadale, N.J: Lawrence Erbaum Associates.
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H . Freeman and Company.
Mcleod, D. B. (1986). Technology and the role of affect in teaching mathematical. problem solving. San Diego State Univ. Calif.
National Council of Supervisors of Mathematics. (1977). Position paper on basic mathematical skills. Arithmetic Teacher, 25, 19-22.
National Council of Teachers of Mathematics. (1980). Problem solving be the focus of school mathematical in the 1980’s. An agenda for action. Palo Alto, Calif: Dale Seymour Publications press.
Polya, G. (1962): Mathematical discovery on understanding learning, and teaching problem solving. Wiley, 2, 117.
Polya, G. (1945). How to solve it? Princeton, New Jersey: Princeton University Press.
Polya, G. (1957) How to solve it? Second edition, NJ: Princeton University Press.
Rowe, H. A. H. (1985). Problem solving and intelligence, Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.
Russell, S. (1999). Mathematical reasoning in the elementary grades. In L. V. Stiff & F. R. Curcio (Eds.), Developing mathematical reasoning in grades K-12, 1-12 Reston, VA: NCTM.
Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
Schoenfeld, A. H. (1992). Learning to think mathematical: problem solving, metacognition, and sense making in mathematics. In D.A. Grouws (ED.). Handbook of research on mathematics teaching and learning. Macmillan Publishing Company, Maxwell Macmillan Canada.
Silver, E. A. (1982). Thinking about problem solving : Toward an understanding of metacognitive aspects of mathematical problem solving. Unpublished manuscript, San Diego State University, Department of Mathematical Sciences, San Diago, CA.
Silver, E. A. (1985). Teaching and learning mathematical problem solving: multiple research perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.
Yerushalmy, M. & Schwartz, J. L. (1993). Seizing the Opportunity to Make Algebra Mathematically and Pedagogically Interesting. In T. A Romberg ,& E. Fennema, & T.P. Carpenter(Eds.), Integrating Research on the Graphical Representation of Functions, 41-68. London: Lawerance Erlbaum.