(34.237.124.210) 您好!臺灣時間:2021/03/02 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林艾德
研究生(外文):Ai-Te Lin
論文名稱:犬乳腺瘤、肝樣細胞瘤及肥大細胞瘤以電磁熱消融後之炎症細胞浸潤情形
論文名稱(外文):Infiltration of inflammatory cells in canine mammary gland, hepatoid gland and mast cell tumors following electromagnetic thermoablation
指導教授:張仕杰
指導教授(外文):Shih-Chieh Chang
口試委員:廖俊旺廖泰慶
口試委員(外文):Jiunn-Wang LiaoTai-Ching Liao
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:電磁熱消融炎症細胞腫瘤微環境乳腺瘤肥大細胞瘤肝樣腺腫瘤
外文關鍵詞:Electromagnetic thermoablationinflammatory cellstumor microenvironmentmammary tumormast cell tumorhepatoid tumor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
電磁熱消融在局部腫瘤控制已有廣泛討論。在伴侶動物,熱消融後引發的腫瘤微環境變化卻很少被探討。因此,本實驗目的在評估犬腫瘤經電磁熱消融術後,於壞死區、過渡區和周圍正常區之炎症細胞浸潤情形。本研究包括13隻患犬的15個腫瘤,有乳腺瘤(n=7)、肥大細胞瘤(n=4)和肝樣腺腫瘤(n=4),皆於電磁熱消融前二週以生檢採樣進行過組織學診斷。電磁熱消融(攝氏90-100度, 300秒)術後第1至第4天於熱消融區與正常組織之交界處收集2至3個樣本。炎症細胞的數量由5到10個隨機經光學顯微鏡高倍視野(400X)決定。組織學可見在全部腫瘤之嗜中性球平均數隨著天數增加而增加(第1, 2, 3, 4天=1.7±1.1, 39.8±20.4, 42.7±33.9, 233.7±93.4)。可觀察到嗜中性球主要是在壞死區(89.3%)、過渡區(97.5%)和周圍正常區(96.9%)。與乳腺瘤和肥大細胞瘤相比,肝樣腺腫瘤中漿細胞的數量有顯著增加(P =0.008);再者,漿細胞最有可能(P=0.032)於肝樣腺腫瘤中的過渡區被觀察到。在全部樣本中,CD3淋巴球出現於周圍正常區有顯著差異(P <0.001)。然而,CD4和CD8淋巴球未在全部樣本中觀察到。總結來說,在局部腫瘤微環境中,嗜中性球是主要被電磁熱消融誘發的急性炎症細胞。電磁熱消融術後在肝樣腺腫瘤中,漿細胞與T淋巴球之浸潤分別最可能於過渡區和周圍正常區中被觀察到。電磁熱消融後的4天內沒有觀察到犬輔助T細胞和毒殺T細胞。
Electromagnetic thermoablation (EMTA) has been widely investigated for local tumor control. The change of tumor microenvironment induced by thermoablation in companion animals is rarely explored. The aim of this study was to evaluate the infiltration of inflammatory cells in the necrotic zone, transitional zone and peripheral normal zone following EMTA in canine tumors. Fifteen tumors from 13 dogs including mammary gland tumors (MGTs) (n=7), mast cell tumors (MCTs) (n=4) and hepatoid gland tumors (HGTs) (n=4), which were diagnosed by the needle core biopsy via histological examination in two weeks before EMTA. 2 to 3 biopsy samples of the boundaries of the lesions were obtained on day 1 to day 4 after EMTA (100°C, 300 seconds). The number of inflammatory cells was determined by 5 to 10 randomized microscopic high-power fields (400 magnification). Histological assessments showed that the mean of neutrophils increased in all tumor types continually after EMTA (day 1, 2, 3, 4=1.7±4.2, 39.8±57.8, 42.7±89.6, 233.7±186.7). Of all, neutrophils were predominantly observed in the necrotic zone (89.3%), transitional zone (97.5%) and peripheral normal zone (96.9%). The number of plasma cells significantly increased (P=0.008) in HGTs when compared with MGTs and MCTs. Moreover, plasma cells were most likely observed (P=0.032) in the transitional zone of HGTs. Immunohistochemical examinations, CD3+ lymphocytes were most likely observed (P=0.018) in HGTs when compared with MGTs and MCTs. Of all, CD3+ lymphocytes had a significant difference (P<0.001) in peripheral normal zone. However, CD4+ and CD8+ lymphocytes were not observed in all tumor types. In conclusion, the neutrophil was the predominantly acute inflammatory cell, in local tumor microenvironment, induced by EMTA. In HGTs, the infiltration plasma cells and lymphocytes were most likely observed in the transitional zone and the peripheral normal zone respectively after EMTA. Canine T helper cells and cytotoxic T cells were not observed within 4 days post-EMTA.
摘要 i
Abstract ii
Contents iii
Abbreviations iv
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Material and Methods 6
2.1 Samples collection 6
2.2 Histopathological examinations 8
2.3 Immunohistochemical examinations 8
2.3.1 Detection of CD3 and CD79a with paraffin section by immunohistochemical stain 8
2.3.2 Detection of CD4 and CD8 with frozen section by immunohistochemical stain 9
2.4 Statistical analysis 11
Chapter 3 Results 14
3.1 Patients and Samples 14
3.2 Histopathological examination results 14
3.2.1 Infiltration of inflammatory cells pre- and post-EMTA on day 1 to day 4 in histopathology 14
3.2.2 Infiltration of inflammatory cells in different tumor types post-EMTA in histopathology 15
3.2.3 Infiltration of inflammatory cells in different zones post-EMTA in histopathology 15
3.3 Immunohistochemical stain results of CD3, CD79a, CD4 and CD8 28
3.3.1 Change in the number of the heat-ablated lesions infiltrating lymphocytes in different tumor types and days of post-EMTA 28
Chapter 4 Discussion 39
References 44
Abi Abdallah, D.S., Egan, C.E., Butcher, B.A., Denkers, E.Y., 2011. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. International Immunology 23, 317-326.

Ahmed, M., Brace, C.L., Lee, F.T., Jr., Goldberg, S.N., 2011. Principles of and advances in percutaneous ablation. Radiology 258, 351-369.

Amulic, B., Cazalet, C., Hayes, G.L., Metzler, K.D., Zychlinsky, A., 2012. Neutrophil function: from mechanisms to disease. Annual Review of Immunology 30, 459-489.

Andersen, M.H., Schrama, D., Thor Straten, P., Becker, J.C., 2006. Cytotoxic T cells. Journal of Investigative Dermatology 126, 32-41.

Baisi, A., De Simone, M., Raveglia, F., Cioffi, U., 2013. Thermal ablation in the treatment of lung cancer: present and future. European Journal of Cardio-Thoracic Surgery 43, 683-686.

Bennouna, S., Denkers, E.Y., 2005. Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. Journal of Immunology 174, 4845-4851.

Brandes, M., Willimann, K., Moser, B., 2005. Professional antigen-presentation function by human gammadelta T Cells. Science 309, 264-268.

Caccamo, N., Battistini, L., Bonneville, M., Poccia, F., Fournie, J.J., Meraviglia, S., Borsellino, G., Kroczek, R.A., La Mendola, C., Scotet, E., Dieli, F., Salerno, A., 2006. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. Journal of Immunology 177, 5290-5295.

Caccamo, N., Todaro, M., La Manna, M.P., Sireci, G., Stassi, G., Dieli, F., 2012. IL-21 regulates the differentiation of a human gammadelta T cell subset equipped with B cell helper activity. Public Library of Science One 7, e41940.
Cerutti, A., Puga, I., Cols, M., 2012. New helping friends for B cells. European Journal of Immunology 42, 1956-1968.

Chodaczek, G., Papanna, V., Zal, M.A., Zal, T., 2012. Body-barrier surveillance by epidermal gammadelta TCRs. Nature Immunology 13, 272-282.

Chu, K.F., Dupuy, D.E., 2014. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews Cancer 14, 199-208.

D''Acquisto, F., Crompton, T., 2011. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochemical Pharmacology 82, 333-340.

den Brok, M.H., Sutmuller, R.P., Nierkens, S., Bennink, E.J., Frielink, C., Toonen, L.W., Boerman, O.C., Figdor, C.G., Ruers, T.J., Adema, G.J., 2006. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. British Journal of Cancer 95, 896-905.

den Brok, M.H., Sutmuller, R.P., van der Voort, R., Bennink, E.J., Figdor, C.G., Ruers, T.J., Adema, G.J., 2004. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Research 64, 4024-4029.

Devilder, M.C., Maillet, S., Bouyge-Moreau, I., Donnadieu, E., Bonneville, M., Scotet, E., 2006. Potentiation of antigen-stimulated V gamma 9V delta 2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. Journal of Immunology 176, 1386-1393.

Dromi, S.A., Walsh, M.P., Herby, S., Traughber, B., Xie, J., Sharma, K.V., Sekhar, K.P., Luk, A., Liewehr, D.J., Dreher, M.R., Fry, T.J., Wood, B.J., 2009. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology 251, 58-66.

Duff, G.W., 1986. Is fever beneficial to the host: a clinical perspective. Yale Journal of Biology and Medicine 59, 125-130.

Duffy, D., Perrin, H., Abadie, V., Benhabiles, N., Boissonnas, A., Liard, C., Descours, B., Reboulleau, D., Bonduelle, O., Verrier, B., Van Rooijen, N., Combadiere, C., Combadiere, B., 2012. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity 37, 917-929.

Evans, C., Galustian, C., Kumar, D., Hagger, R., Melville, D.M., Bodman-Smith, M., Jourdan, I., Gudgeon, A.M., Dalgleish, A.G., 2009. Impact of surgery on immunologic function: comparison between minimally invasive techniques and conventional laparotomy for surgical resection of colorectal tumors. American Journal of Surgery 197, 238-245.

Ford, M.S., Zhang, Z.X., Chen, W., Zhang, L., 2006. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. Journal of Immunology 177, 2803-2809.

Frey, B., Weiss, E.M., Rubner, Y., Wunderlich, R., Ott, O.J., Sauer, R., Fietkau, R., Gaipl, U.S., 2012. Old and new facts about hyperthermia-induced modulations of the immune system. International Journal of Hyperthermia 28, 528-542.

Gillette, E.L., 1982. Hyperthermia effects in animals with spontaneous tumors. Journal of the National Cancer Institute Monographs 61, 361-364.

Glass, E.J., Scheerlinck, J.-P., Sharif, S., 1990. Veterinary Immunology and Immunopathology. Volumes 1-25, November 1979-August 1990. Cumulative indexes. Veterinary Immunology and Immunopathology 25, 289-424.

Goldschmidt, M., Pena, L., Rasotto, R., Zappulli, V., 2011. Classification and grading of canine mammary tumors. Veterinary Pathology 48, 117-131.

Green, M.H., Vermeulen, C.W., 1994. Fever and the control of gram-negative bacteria. Research in Microbiology 145, 269-272.

Habash, R.W., Bansal, R., Krewski, D., Alhafid, H.T., 2006. Thermal therapy, part 1: an introduction to thermal therapy. Critical Reviews in Biomedical Engineering 34, 459-489.

Habash, R.W., Bansal, R., Krewski, D., Alhafid, H.T., 2007. Thermal therapy, Part III: ablation techniques. Critical Reviews in Biomedical Engineering 35, 37-121.

Haen, S.P., Pereira, P.L., Salih, H.R., Rammensee, H.G., Gouttefangeas, C., 2011. More than just tumor destruction: immunomodulation by thermal ablation of cancer. Clinical and Developmental Immunology 2011, 160250.

Hanson, D.F., 1997. Fever, temperature, and the immune response. Annals of the New York Academy of Sciences 813, 453-464.

Hayday, A., Tigelaar, R., 2003. Immunoregulation in the tissues by gammadelta T cells. Nature Reviews: Immunology 3, 233-242.

Hobohm, U., 2005. Fever therapy revisited. British Journal of Cancer 92, 421-425.

Hu, Z., Yang, X.Y., Liu, Y., Morse, M.A., Lyerly, H.K., Clay, T.M., Zhong, P., 2005. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochemical and Biophysical Research Communications 335, 124-131.

Hu, Z., Yang, X.Y., Liu, Y., Sankin, G.N., Pua, E.C., Morse, M.A., Lyerly, H.K., Clay, T.M., Zhong, P., 2007. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. Journal of Translational Medicine 5, 34.

Huang, S.C., Chang, Y.Y., Kang, J.W., Tsai, H.W., Shan, Y.S., Lin, X.Z., Lee, G.B., 2014a. An electromagnetic thermotherapy system with a deep penetration depth for percutaneous thermal ablation. Annals of Biomedical Engineering 42, 86-96.

Huang, S.C., Kang, J.W., Tsai, H.W., Shan, Y.S., Lin, X.Z., Lee, G.B., 2014b. Electromagnetic thermotherapy system with needle arrays: a practical tool for the removal of cancerous tumors. IEEE Transactions on Biomedical Engineering 61, 598-605.

Hundt, W., O''Connell-Rodwell, C.E., Bednarski, M.D., Steinbach, S., Guccione, S., 2007. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Academic Radiology 14, 859-870.

Kalyan, S., Kabelitz, D., 2014. When neutrophils meet T cells: beginnings of a tumultuous relationship with underappreciated potential. European Journal of Immunology 44, 627-633.
Keshavarzi, A., Vaezy, S., Noble, M.L., Chi, E.Y., Walker, C., Martin, R.W., Fujimoto, V.Y., 2002. Treatment of uterine leiomyosarcoma in a xenograft nude mouse model using high-intensity focused ultrasound: a potential treatment modality for recurrent pelvic disease. Gynecologic Oncology 86, 344-350.

Kramer, G., Steiner, G.E., Grobl, M., Hrachowitz, K., Reithmayr, F., Paucz, L., Newman, M., Madersbacher, S., Gruber, D., Susani, M., Marberger, M., 2004. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 58, 109-120.

Lahn, M., Kanehiro, A., Takeda, K., Konowal, A., O''Brien, R.L., Gelfand, E.W., Born, W.K., 2001. gammadelta T cells as regulators of airway hyperresponsiveness. International Archives of Allergy and Immunology 125, 203-210.

Lawson, R., 1956. Implications of surface temperatures in the diagnosis of breast cancer. Canadian Medical Association Journal 75, 309-311.

Liu, Y., Cao, C.S., Yu, Y., Si, Y.M., 2016. Thermal ablation in cancer. Oncology Letters 12, 2293-2295.

Lu, P., Zhu, X.Q., Xu, Z.L., Zhou, Q., Zhang, J., Wu, F., 2009. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 145, 286-293.

Mace, T.A., Zhong, L., Kokolus, K.M., Repasky, E.A., 2012. Effector CD8+ T cell IFN-gamma production and cytotoxicity are enhanced by mild hyperthermia. International Journal of Hyperthermia 28, 9-18.

Maletto, B.A., Ropolo, A.S., Alignani, D.O., Liscovsky, M.V., Ranocchia, R.P., Moron, V.G., Pistoresi-Palencia, M.C., 2006. Presence of neutrophil-bearing antigen in lymphoid organs of immune mice. Blood 108, 3094-3102.

Mantovani, A., Cassatella, M.A., Costantini, C., Jaillon, S., 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews: Immunology 11, 519-531.

Mayadas, T.N., Cullere, X., Lowell, C.A., 2014. The multifaceted functions of neutrophils. Annual Review of Pathology 9, 181-218.

Minges Wols, H.A., Ippolito, J.A., Yu, Z., Palmer, J.L., White, F.A., Le, P.T., Witte, P.L., 2007. The effects of microenvironment and internal programming on plasma cell survival. International Immunology 19, 837-846.

Mixter, P.F., Russell, J.Q., Morrissette, G.J., Charland, C., Aleman-Hoey, D., Budd, R.C., 1999. A model for the origin of TCR-alphabeta+ CD4-CD8- B220+ cells based on high affinity TCR signals. Journal of Immunology 162, 5747-5756.

Mocsai, A., 2013. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine 210, 1283-1299.

Muller, I., Munder, M., Kropf, P., Hansch, G.M., 2009. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends in Immunology 30, 522-530.

Nikfarjam, M., Muralidharan, V., Christophi, C., 2005. Mechanisms of focal heat destruction of liver tumors. Journal of Surgical Research 127, 208-223.

Patnaik, A.K., Ehler, W.J., MacEwen, E.G., 1984. Canine cutaneous mast cell tumor: morphologic grading and survival time in 83 dogs. Veterinary Pathology 21, 469-474.

Pillay, J., Kamp, V.M., van Hoffen, E., Visser, T., Tak, T., Lammers, J.W., Ulfman, L.H., Leenen, L.P., Pickkers, P., Koenderman, L., 2012. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. Journal of Clinical Investigation 122, 327-336.

Radsak, M., Iking-Konert, C., Stegmaier, S., Andrassy, K., Hansch, G.M., 2000. Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation. Immunology 101, 521-530.

Roberts, N.J., Jr., 1979. Temperature and host defense. Microbiological Reviews 43, 241-259.

Rovere-Querini, P., Manfredi, A.A., 2004. Tumor destruction and in situ delivery of antigen presenting cells promote anti-neoplastic immune responses: implications for the immunotherapy of pancreatic cancer. JOP 5, 308-314.

Shan, C.C., Shi, L.R., Ding, M.Q., Zhu, Y.B., Li, X.D., Xu, B., Jiang, J.T., Wu, C.P., 2015. Cytokine-induced killer cells co-cultured with dendritic cells loaded with the protein lysate produced by radiofrequency ablation induce a specific antitumor response. Oncology Letters 9, 1549-1556.

Strid, J., Roberts, S.J., Filler, R.B., Lewis, J.M., Kwong, B.Y., Schpero, W., Kaplan, D.H., Hayday, A.C., Girardi, M., 2008. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nature Immunology 9, 146-154.

Takagi, H., Azuma, K., Osaki, T., Itoh, N., Nakazumi, S., Taura, Y., Okamoto, Y., 2014a. High temperature hyperthermia treatment for canines exhibiting superficial tumors: A report of three cases. Oncology Letters 8, 2055-2058.

Takagi, H., Azuma, K., Tsuka, T., Imagawa, T., Osaki, T., Okamoto, Y., 2014b. Antitumor effects of high-temperature hyperthermia on a glioma rat model. Oncology Letters 7, 1007-1010.

Thompson, J.M., Dhoodhat, Y.A., Bleehen, N.M., Gorman, N.T., 1988. Microwave hyperthermia in the treatment of spontaneous canine tumours: an analysis of treatment parameters and tumour response. International Journal of Hyperthermia 4, 383-399.

Tiong, L., Maddern, G.J., 2011. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. British Journal of Surgery 98, 1210-1224.

Toraya-Brown, S., Fiering, S., 2014. Local tumour hyperthermia as immunotherapy for metastatic cancer. International Journal of Hyperthermia 30, 531-539.

Toraya-Brown, S., Sheen, M.R., Zhang, P., Chen, L., Baird, J.R., Demidenko, E., Turk, M.J., Hoopes, P.J., Conejo-Garcia, J.R., Fiering, S., 2014. Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10, 1273-1285.

Tsang, Y.W., Huang, C.C., Yang, K.L., Chi, M.S., Chiang, H.C., Wang, Y.S., Andocs, G., Szasz, A., Li, W.T., Chi, K.H., 2015. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. BMC Cancer 15, 708.

Uhl, B., Vadlau, Y., Zuchtriegel, G., Nekolla, K., Sharaf, K., Gaertner, F., Massberg, S., Krombach, F., Reichel, C.A., 2016. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood.

van den Bijgaart, R.J., Eikelenboom, D.C., Hoogenboom, M., Futterer, J.J., den Brok, M.H., Adema, G.J., 2017. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunology, Immunotherapy 66, 247-258.

van Gisbergen, K.P., Sanchez-Hernandez, M., Geijtenbeek, T.B., van Kooyk, Y., 2005. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. Journal of Experimental Medicine 201, 1281-1292.

Vantourout, P., Hayday, A., 2013. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nature Reviews: Immunology 13, 88-100.

Wang, X., Qin, J., Chen, J., Wang, L., Chen, W., Tang, L., 2013. The effect of high-intensity focused ultrasound treatment on immune function in patients with uterine fibroids. International Journal of Hyperthermia 29, 225-233.

Wen, L., Pao, W., Wong, F.S., Peng, Q., Craft, J., Zheng, B., Kelsoe, G., Dianda, L., Owen, M.J., Hayday, A.C., 1996. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by "non alpha/beta" T cells. Journal of Experimental Medicine 183, 2271-2282.

Wissniowski, T.T., Hansler, J., Neureiter, D., Frieser, M., Schaber, S., Esslinger, B., Voll, R., Strobel, D., Hahn, E.G., Schuppan, D., 2003. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Research 63, 6496-6500.

Wu, F., 2016. Heat-Based Tumor Ablation: Role of the Immune Response. Advances in Experimental Medicine and Biology 880, 131-153.
Wu, F., Wang, Z.B., Lu, P., Xu, Z.L., Chen, W.Z., Zhu, H., Jin, C.B., 2004. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound in Medical and Biology 30, 1217-1222.

Wu, F., Zhou, L., Chen, W.R., 2007. Host antitumour immune responses to HIFU ablation. International Journal of Hyperthermia 23, 165-171.

Xia, J.Z., Xie, F.L., Ran, L.F., Xie, X.P., Fan, Y.M., Wu, F., 2012. High-intensity focused ultrasound tumor ablation activates autologous tumor-specific cytotoxic T lymphocytes. Ultrasound in Medical and Biology 38, 1363-1371.

Xu, Z.L., Zhu, X.Q., Lu, P., Zhou, Q., Zhang, J., Wu, F., 2009. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound in Medical and Biology 35, 50-57.

Yang, R., Reilly, C.R., Rescorla, F.J., Sanghvi, N.T., Fry, F.J., Franklin, T.D., Jr., Grosfeld, J.L., 1992. Effects of high-intensity focused ultrasound in the treatment of experimental neuroblastoma. Journal of Pediatric Surgery 27, 246-250; discussion 250-241.

Zerbini, A., Pilli, M., Fagnoni, F., Pelosi, G., Pizzi, M.G., Schivazappa, S., Laccabue, D., Cavallo, C., Schianchi, C., Ferrari, C., Missale, G., 2008. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. Journal of Immunotherapy 31, 271-282.

Zerbini, A., Pilli, M., Laccabue, D., Pelosi, G., Molinari, A., Negri, E., Cerioni, S., Fagnoni, F., Soliani, P., Ferrari, C., Missale, G., 2010. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 138, 1931-1942.

Zhang, H.G., Mehta, K., Cohen, P., Guha, C., 2008. Hyperthermia on immune regulation: a temperature''s story. Cancer Letters 271, 191-204.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔