跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛彤
研究生(外文):Tung Hsueh
論文名稱:單點與連續測量血清 N 端前腦利鈉激素濃度於退行性二尖瓣疾病犬隻的臨床應用
論文名稱(外文):Clinical Application of Single and Serial Measurements of Serum N-terminal pro- brain Natriuretic Peptide Concentration in Dogs with Degenerative Mitral Valve Disease
指導教授:陳文英陳文英引用關係
指導教授(外文):Wen-Ying Chen
口試委員:周濟眾蘇璧伶
口試委員(外文):Chi-Chung ChouBi-Ling Su
口試日期:2017-05-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:102
中文關鍵詞:二尖瓣疾病N端前腦力鈉激素連續測量
外文關鍵詞:DogMitral valve diseaseNT-proBNPSerial measurements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
N端前腦力鈉激素(NT-proBNP)在心肌因容積或壓力過負荷而伸展、延長時釋出,其循環中濃度與心臟疾病的嚴重程度呈正相關。本研究的目的為在患有退行性二尖瓣疾病的犬隻,評估NT-proBNP與各臨床評估項目之間的相關性,以及針對有心衰竭的犬隻評估連續測量NT-proBNP的預後價值。共有80隻飼主飼養的犬隻符合條件進入研究,分別以美國獸醫美國獸醫內科協會提出的慢性瓣膜性疾病分級系統、心臟有無重塑、心臟有無衰竭等進行分組,比較組間初診數據的差異。其中,34隻犬診斷有心衰竭,因此進行3次的NT-proBNP連續測量並進行存活分析。結果顯示,由A階段至B2階段NT-proBNP濃度呈上升趨勢,且有心臟重塑組及有心衰竭組中其濃度顯著較高(p<.001)。此外,NT-proBNP濃度與臨床、影像分數以及所選的心臟超音波數值均呈顯著正相關(p值均<.001)。在心衰竭犬隻的存活分析當中,存活以及非存活犬隻之間NT-proBNP的初診濃度(p=.830)、第一次追蹤值(p=.650)、前後差值(p=.470)以及差值百分比(p=.376)均無統計學上的顯著差異;類別分組之間的死亡率也無統計學上的顯著差異。經性別分層分析後,發現性別可能干擾NT-proBNP的預測能力。本研究確認了NT-proBNP於評估心臟疾病嚴重程度,以及反映犬隻即時狀態的臨床應用性。未來需要針對NT-proBNP趨勢、性別以及絕育狀態進行更多研究。
The N-terminal pro-brain natriuretic peptide (NT-proBNP) is released from stretched cardiomyocytes and its circulating concentration is positively associated with heart disease severity. The purpose of this study was to evaluate the correlation between NT-proBNP and various clinical assessments, and to estimate the prognostic value of serial measurement of serum concentration of NT-proBNP in dogs with congestive heart failure (CHF) secondary to degenerative mitral valve disease (DMVD). Eighty client-owned dogs were enrolled and classified by American College of Veterinary Internal Medicine guideline, and they were also allocated into groups by cardiac remodeling and CHF. Thirty-four dogs with CHF further underwent serial measurements of NT-proBNP. The mortality rate between sub-categorical groups were compared. The results showed that NT-proBNP concentration had an increasing trend from stage A to stage B2, and was significantly higher in dogs with cardiac remodeling (p<.001) and dogs with CHF (p<.001). Moreover, NT-proBNP was significantly and positively correlated with clinical score (p<.001), radiographic score (p<.001) and several selected echocardiographic indices (all p<.001). In the survival analysis, the NT-proBNP of baseline (p=.830), first follow-up (p=.650), absolute (p=.470) and relative change (p=.376) had no significant difference between survivors and non-survivors. And the mortality rate between sub-categorical groups did not differ statistically. A possible sexual effect was observed by sex stratification. The study confirmed the clinical utility of NT-proBNP in assessing heart disease severity and in reflecting the instant clinical status in dogs with DMVD. Further study for evaluating the association among NT-proBNP trending, sex and neutered status was warrant.
摘要......................................................i
Abstract .........................................................ii
Contents .............................................. ..........iii
List of Tables.......................................................v
List of Figures..........................................vi
1. Introduction...........................................1
2. Literature review................................3
2.1 Degenerative mitral valve disease.................... 3
2.1.1 Introduction.............................. 3
2.1.2 Staging system ............................ 3
2.1.3 Pathophysiology ............................5
2.1.4 History and Clinical findings ..............6
2.1.5 Diagnostic imaging ......................8
2.1.6 Treatment .................................. 12
2.2 Heart failure ..................................... 13
2.2.1 Definition ................................... 13
2.2.2 Classification .................................. 13
2.2.3 History and Clinical findings in Left-side Congestive Heart Failure ............ 14
2.2.4 Diagnostic Imaging in Left-side Congestive Heart Failure ........................... 15
2.2.5 Treatment in Congestive Heart Failure..... 15
2.3 Natriuretic peptides ....................18
2.3.1 Definition and Classification of Biomarkers ....... 18
2.3.2 Background knowledge .............................. 19
2.3.3 Biologic Variabilities ..................... 21
2.3.4 Clinical Applications ............................. 23
2.3.5 Limitations ............................ 24
2.3.6 Prospects .................................... 25
3. Material and Method..........................27
3.1 Animals ..................27
3.2 Groupings................................................. ....27
3.2.1 Baseline comparison .......................27
3.2.2 Serial measurements in dogs with congestive heart failure........ 29
3.3 Clinical assessment............................. 32
3.3.1 History and Physical examination .......... 32
3.3.2 Blood pressure measurement .................32
3.3.3 Thoracic radiography ............................. 32
3.3.4 Echocardiogram ............................ 33
3.4 Blood sampling and NT-proBNP analyses ...........34
3.5 Follow-up .................................... 35
3.6 Statistical analysis ............................ 36
4. Results ......................................38
4.1 Animals ..................................... 38
4.2 Analysis of Variables at Baseline ................ 39
4.2.1 ACVIM Grouping.............................. 39
4.2.2 Cardiac Remodeling Grouping ...................... 43
4.2.3 Congestive Heart Failure Grouping ..................46
4.3 Correlation and Regression Analysis ..................48
4.4 Survival Analysis .........................51
4.4.1 Sex stratification ...................... 57
4.4.2 Impact of medications.................... 68
5. Discussion ....................................70
6. References ...................................83
Appendix: Table of abbreviation................101
Books
1. Keene BW, Smith Jr FW, Tilley LP, et al. Rapid interpretation of heart and lung sounds: A guide to cardiac and respiratory auscultation in dogs and catsElsevier Health Sciences; 2014.
2. Kittleson MD, Kienle RD. Small animal cardiovascular medicineMosby; 1998.
3. Boon JA. Veterinary echocardiographyJohn Wiley & Sons; 2011.
4. Thrall DE. Textbook of veterinary diagnostic radiologyElsevier Health Sciences; 2013.
5. Nelson RW, Couto CG. Small animal internal medicineElsevier Health Sciences; 2014.
6. de Madron E, Chetboul V, Bussadori C. Clinical Echocardiography of the Dog and CatElsevier Health Sciences; 2015.
7. Zachary JF, McGavin MD. Pathologic basis of veterinary diseaseElsevier Health Sciences; 2013.
8. Hall JE. Guyton and Hall textbook of medical physiologyElsevier Health Sciences; 2015.
9. Fox PR. Textbook of canine and feline cardiology: principles and clinical practiceSaunders; 1999.
10. Dolgin M, Association CCNYH. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels: the Criteria Committee of the New York Heart AssociationLittle, Brown; 1994.

Journal Articles
11. Loke I, Squire IB, Davies JE, et al. Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate. Eur J Heart Fail 2003;5:599-606.
12. Keyzer JM, Hoffmann JJ, Ringoir L, et al. Age-and gender-specific brain natriuretic peptide (BNP) reference ranges in primary care. Clinical Chemistry and Laboratory Medicine (CCLM) 2014;52:1341-1346.
13. Misbach C, Chetboul V, Concordet D, et al. Basal plasma concentrations of N-terminal pro-B-type natriuretic peptide in clinically healthy adult small size dogs: effect of body weight, age, gender and breed, and reference intervals. Res Vet Sci 2013;95:879-885.
14. Schou M, Gustafsson F, Nielsen PH, et al. Unexplained week-to-week variation in BNP and NT-proBNP is low in chronic heart failure patients during steady state. Eur J Heart Fail 2007;9:68-74.
15. MacDonald KA, Kittleson MD, Munro C, et al. Brain Natriuretic Peptide Concentration in Dogs with Heart Disease and Congestive Heart Failure. J Vet Intern Med 2003;17:172.
16. DeFrancesco TC, Rush JE, Rozanski EA, et al. Prospective clinical evaluation of an ELISA B‐type natriuretic peptide assay in the diagnosis of congestive heart failure in dogs presenting with cough or dyspnea. J Vet Intern Med 2007;21:243-250.
17. Eriksson AS, Haggstrom J, Pedersen HD, et al. Increased NT-proANP predicts risk of congestive heart failure in Cavalier King Charles spaniels with mitral regurgitation caused by myxomatous valve disease. J Vet Cardiol 2014;16:141-154.
18. Hezzell MJ, Boswood A, Chang YM, et al. The combined prognostic potential of serum high-sensitivity cardiac troponin I and N-terminal pro-B-type natriuretic peptide concentrations in dogs with degenerative mitral valve disease. J Vet Intern Med 2012;26:302-311.
19. Serres F, Pouchelon JL, Poujol L, et al. Plasma N-terminal pro-B-type natriuretic peptide concentration helps to predict survival in dogs with symptomatic degenerative mitral valve disease regardless of and in combination with the initial clinical status at admission. J Vet Cardiol 2009;11:103-121.
20. Moonarmart W, Boswood A, Luis Fuentes V, et al. N-terminal pro B-type natriuretic peptide and left ventricular diameter independently predict mortality in dogs with mitral valve disease. J Small Anim Pract 2010;51:84-96.
21. Kanno N, Hori Y, Hidaka Y, et al. Plasma atrial natriuretic peptide and N-terminal pro B-type natriuretic peptide concentrations in dogs with right-sided congestive heart failure. J Vet Med Sci 2016;78:535-542.
22. Kellihan HB, Mackie BA, Stepien RL. NT-proBNP, NT-proANP and cTnI concentrations in dogs with pre-capillary pulmonary hypertension. J Vet Cardiol 2011;13:171-182.
23. Oyama MA, Peddle GD, Reynolds CA, et al. Use of the loop diuretic torsemide in three dogs with advanced heart failure. J Vet Cardiol 2011;13:287-292.
24. Peddle GD, Singletary GE, Reynolds CA, et al. Effect of torsemide and furosemide on clinical, laboratory, radiographic and quality of life variables in dogs with heart failure secondary to mitral valve disease. J Vet Cardiol 2012;14:253-259.
25. Adam O, Zimmer C, Hanke N, et al. Inhibition of aldosterone synthase (CYP11B2) by torasemide prevents atrial fibrosis and atrial fibrillation in mice. J Mol Cell Cardiol 2015;85:140-150.
26. Bernay F, Bland JM, Haggstrom J, et al. Efficacy of spironolactone on survival in dogs with naturally occurring mitral regurgitation caused by myxomatous mitral valve disease. J Vet Intern Med 2010;24:331-341.
27. Thomason J, Fallaw T, Carmichael K, et al. Gingival hyperplasia associated with the administration of amlodipine to dogs with degenerative valvular disease (2004–2008). J Vet Intern Med 2009;23:39-42.
28. Boyle KL, Leech E. A review of the pharmacology and clinical uses of pimobendan. J Vet Emerg Crit Care (San Antonio) 2012;22:398-408.
29. Mizuno M, Yamano S, Chimura S, et al. Efficacy of pimobendan on survival and reoccurrence of pulmonary edema in canine congestive heart failure. J Vet Med Sci 2017;79:29-34.
30. Lake-Bakaar GA, Singh MK, Kass PH, et al. Effect of pimobendan on the incidence of arrhythmias in small breed dogs with myxomatous mitral valve degeneration. J Vet Cardiol 2015;17:120-128.
31. von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res 2007;73:298-309.
32. Slupe JL, Freeman LM, Rush JE. Association of body weight and body condition with survival in dogs with heart failure. J Vet Intern Med 2008;22:561-565.
33. Freeman LM. Beneficial effects of omega-3 fatty acids in cardiovascular disease. J Small Anim Pract 2010;51:462-470.
34. Lenox CE, Bauer JE. Potential adverse effects of omega-3 Fatty acids in dogs and cats. J Vet Intern Med 2013;27:217-226.
35. Oyama MA. Using cardiac biomarkers in veterinary practice. Vet Clin North Am Small Anim Pract 2013;43:1261-1272, vi.
36. Gaggin HK, Januzzi JL, Jr. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta 2013;1832:2442-2450.
37. van Kimmenade RR, Januzzi JL, Jr. The evolution of the natriuretic peptides - Current applications in human and animal medicine. J Vet Cardiol 2009;11 Suppl 1:S9-21.
38. Nagai-Okatani C, Kangawa K, Minamino N. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization. J Pept Sci 2017.
39. Oyama MA, Boswood A, Connolly DJ, et al. Clinical usefulness of an assay for measurement of circulating N-terminal pro-B-type natriuretic peptide concentration in dogs and cats with heart disease. J Am Vet Med Assoc 2013;243:71-82.
40. Thomas CJ, Woods RL. Haemodynamic action of B‐type natriuretic peptide substantially outlasts its plasma half‐life in conscious dogs. Clin Exp Pharmacol Physiol 2003;30:369-375.
41. Pemberton CJ, Johnson ML, Yandle TG, et al. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension 2000;36:355-359.
42. Pelander L, Haggstrom J, Ley C, et al. Cardiac Troponin I and Amino‐Terminal Pro B‐Type Natriuretic Peptide in Dogs With Stable Chronic Kidney Disease. J Vet Intern Med 2017.
43. Nabity MB, Lees GE, Boggess MM, et al. Symmetric Dimethylarginine Assay Validation, Stability, and Evaluation as a Marker for the Early Detection of Chronic Kidney Disease in Dogs. J Vet Intern Med 2015;29:1036-1044.
44. Finco D, Duncan J. Evaluation of blood urea nitrogen and serum creatinine concentrations as indicators of renal dysfunction: a study of 111 cases and a review of related literature. J Am Vet Med Assoc 1976;168:593-601.
45. Ames MK, Atkins CE, Lee S, et al. Effects of high doses of enalapril and benazepril on the pharmacologically activated renin-angiotensin-aldosterone system in clinically normal dogs. Am J Vet Res 2015;76:1041-1050.
46. Atkins C, Rausch W, Gardner S, et al. The effect of amlodipine and the combination of amlodipine and enalapril on the renin‐angiotensin‐aldosterone system in the dog. J Vet Pharmacol Ther 2007;30:394-400.
47. Stopher D, Beresford A, Macrae P, et al. The metabolism and pharmacokinetics of amlodipine in humans and animals. J Cardiovasc Pharmacol 1988;12:S55&hyhen.
48. Nakada Y, Kawakami R, Nakano T, et al. Sex differences in clinical characteristics and long-term outcome in acute decompensated heart failure patients with preserved and reduced ejection fraction. Am J Physiol Heart Circ Physiol 2016;310:H813-820.
49. Buttrick P, Scheuer J. Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 1992;86:1336-1338.
50. Golden KL, Marsh JD, Jiang Y. Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Horm Metab Res 2004;36:197-202.
51. Hori Y, Uechi M, Ebisawa T, et al. The influence of gender on cardiac fibrosis induced by sympathetic stimulation. Chin J Physiol 2008;51:146-151.
52. Chang AY, Abdullah SM, Jain T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol 2007;49:109-116.
53. de Bold MLK. Estrogen, natriuretic peptides and the renin–angiotensin system. Cardiovasc Res 1999;41:524-531.
54. Gallagher PE, Li P, Lenhart JR, et al. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension 1999;33:323-328.
55. Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology 2002;40:976-982.
56. Abdullah SM, Khera A, Das SR, et al. Relation of coronary atherosclerosis determined by electron beam computed tomography and plasma levels of n-terminal pro-brain natriuretic peptide in a multiethnic population-based sample (the Dallas Heart Study). The American journal of cardiology 2005;96:1284-1289.
57. Olive J, Javard R, Specchi S, et al. Effect of cardiac and respiratory cycles on vertebral heart score measured on fluoroscopic images of healthy dogs. J Am Vet Med Assoc 2015;246:1091-1097.
58. Raffan E, Loureiro J, Dukes-McEwan J, et al. The cardiac biomarker NT-proBNP is increased in dogs with azotemia. J Vet Intern Med 2009;23:1184-1189.
59. Schmidt MK, Reynolds CA, Estrada AH, et al. Effect of azotemia on serum N-terminal proBNP concentration in dogs with normal cardiac function: a pilot study. J Vet Cardiol 2009;11 Suppl 1:S81-86.
60. Miyagawa Y, Tominaga Y, Toda N, et al. Relationship between glomerular filtration rate and plasma N-terminal pro B-type natriuretic peptide concentrations in dogs with chronic kidney disease. Vet J 2013;197:445-450.
61. Lee JA, Herndon WE, Rishniw M. The effect of noncardiac disease on plasma brain natriuretic peptide concentration in dogs. J Vet Emerg Crit Care (San Antonio) 2011;21:5-12.
62. Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis 2005;46:610-620.
63. Brunner-La Rocca HP, Eurlings L, Richards AM, et al. Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur J Heart Fail 2015;17:1252-1261.
64. Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide–guided heart failure therapy: a meta-analysis. Arch Intern Med 2010;170:507-514.
65. Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J 2009;158:422-430.
66. Karlstrom P, Alehagen U, Boman K, et al. Brain natriuretic peptide‐guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail 2011;13:1096-1103.
67. Shah MR, Califf RM, Nohria A, et al. The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide–guided therapy in patients with advanced heart failure. Journal of cardiac failure 2011;17:613-621.
68. Cornell CC, Kittleson MD, Torre PD, et al. Allometric Scaling of M-Mode Cardiac Measurements in Normal Adult Dogs. J Vet Intern Med 2004;18:311.
69. Cahill RJ, Pigeon K, Strong-Townsend MI, et al. Analytical validation of a second-generation immunoassay for the quantification of N-terminal pro-B-type natriuretic peptide in canine blood. J Vet Diagn Invest 2015;27:61-67.
70. Raymond I, Groenning B, Hildebrandt Py, et al. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart 2003;89:745-751.
71. Wolf J, Gerlach N, Weber K, et al. The diagnostic relevance of NT-proBNP and proANP 31-67 measurements in staging of myxomatous mitral valve disease in dogs. Vet Clin Pathol 2013;42:196-206.
72. Sanchez X, Prandi D, Garcıa-Guasch L BL, et al. NEW RADIOGRAPHIC MEASUREMENTS OF LEFTATRIAL SIZE IN DOGS WITH DEGENERATIVE MITRALVALVE DISEASE: PRELIMINARY STUDY. (2013 ACVIM Forum Research Abstracts Program). J Vet Intern Med 2013;27:604-756.
73. Hezzell MJ, Boswood A, Moonarmart W, et al. Selected echocardiographic variables change more rapidly in dogs that die from myxomatous mitral valve disease. J Vet Cardiol 2012;14:269-279.
74. Greco A, Meomartino L, Raiano V, et al. Effect of left vs. right recumbency on the vertebral heart score in normal dogs. Vet Radiol Ultrasound 2008;49:454-455.
75. Oyama MA. Neurohormonal activation in canine degenerative mitral valve disease: implications on pathophysiology and treatment. J Small Anim Pract 2009;50 Suppl 1:3-11.
76. Ferasin L, Crews L, Biller D, et al. Risk factors for coughing in dogs with naturally acquired myxomatous mitral valve disease. J Vet Intern Med 2013;27:286-292.
77. Guglielmini C, Diana A, Pietra M, et al. Use of the vertebral heart score in coughing dogs with chronic degenerative mitral valve disease. J Vet Med Sci 2009;71:9-13.
78. Singh MK, Johnson LR, Kittleson MD, et al. Bronchomalacia in dogs with myxomatous mitral valve degeneration. J Vet Intern Med 2012;26:312-319.
79. Ljungvall I, Rishniw M, Porciello F, et al. Murmur intensity in small-breed dogs with myxomatous mitral valve disease reflects disease severity. J Small Anim Pract 2014;55:545-550.
80. Haggstrom J, Kvart C, Hansson K. Heart Sounds and Murmurs: Changes Related to Severity of Chronic Valvular Disease in the Cavalier King Charles Spaniel. J Vet Intern Med 1995;9:75-85.
81. Borgarelli M, Crosara S, Lamb K, et al. Survival characteristics and prognostic variables of dogs with preclinical chronic degenerative mitral valve disease attributable to myxomatous degeneration. J Vet Intern Med 2012;26:69-75.
82. Miller M, Tilley L. International Small Animal Cardiac Health Council: Recommendations for the diagnosis of heart disease and treatment of heart failure in small animals. Manual of Canine and Feline Cardiology 2nd ed WB Saunders, Philadelphia 1995:473-485.
83. Swift S, Baldin A, Cripps P. Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991-2010. J Vet Intern Med 2017;31:9-14.
84. Birkegard AC, Reimann MJ, Martinussen T, et al. Breeding Restrictions Decrease the Prevalence of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels over an 8- to 10-Year Period. J Vet Intern Med 2016;30:63-68.
85. Serfass P, Chetboul V, Sampedrano CC, et al. Retrospective study of 942 small-sized dogs: Prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. J Vet Cardiol 2006;8:11-18.
86. Mattin MJ, Boswood A, Church DB, et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 2015;29:847-854.
87. Wolf J, Gerlach N, Weber K, et al. Lowered N-terminal pro-B-type natriuretic peptide levels in response to treatment predict survival in dogs with symptomatic mitral valve disease. J Vet Cardiol 2012;14:399-408.
88. Richards AM. Serial measurements of plasma B-type natriuretic peptides: what do they tell us? J Am Coll Cardiol 2008;52:1004-1005.
89. Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation 2013;127:500-507; discussion 508.
90. Masson S, Latini R, Anand IS, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol 2008;52:997-1003.
91. Detweiler D, Patterson D. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci 1965;127:481-516.
92. Lopez-Alvarez J, Elliott J, Pfeiffer D, et al. Clinical severity score system in dogs with degenerative mitral valve disease. J Vet Intern Med 2015;29:575-581.
93. Borgarelli M, Buchanan JW. Historical review, epidemiology and natural history of degenerative mitral valve disease. J Vet Cardiol 2012;14:93-101.
94. Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med 2009;23:1142-1150.
95. Borgarelli M, Haggstrom J. Canine degenerative myxomatous mitral valve disease: natural history, clinical presentation and therapy. Vet Clin North Am Small Anim Pract 2010;40:651-663.
96. Haggstrom J, Boswood A, O'Grady M, et al. Longitudinal analysis of quality of life, clinical, radiographic, echocardiographic, and laboratory variables in dogs with myxomatous mitral valve disease receiving pimobendan or benazepril: the QUEST study. J Vet Intern Med 2013;27:1441-1451.
97. Hall C. NT-ProBNP: The Mechanism Behind the Marker. Journal of Cardiac Failure 2005;11:S81-S83.
98. Fine DM, DeClue AE, Reinero CR. Evaluation of circulating amino terminal-pro-B-type natriuretic peptide concentration in dogs with respiratory distress attributable to congestive heart failure or primary pulmonary disease. J Am Vet Med Assoc 2008;232:1674-1679.
99. Fox PR, Oyama MA, Hezzell MJ, et al. Relationship of plasma N-terminal pro-brain natriuretic peptide concentrations to heart failure classification and cause of respiratory distress in dogs using a 2nd generation ELISA assay. J Vet Intern Med 2015;29:171-179.
100. Smith KF, Quinn RL, Rahilly LJ. Biomarkers for differentiation of causes of respiratory distress in dogs and cats: Part 1--Cardiac diseases and pulmonary hypertension. J Vet Emerg Crit Care (San Antonio) 2015;25:311-329.
101. Chetboul V, Serres F, Tissier R, et al. Association of plasma N-terminal pro-B-type natriuretic peptide concentration with mitral regurgitation severity and outcome in dogs with asymptomatic degenerative mitral valve disease. J Vet Intern Med 2009;23:984-994.
102. Oyama MA, Fox PR, Rush JE, et al. Clinical utility of serum N-terminal pro-B-type natriuretic peptide concentration for identifying cardiac disease in dogs and assessing disease severity. J Am Vet Med Assoc 2008;232:1496-1503.
103. Reynolds CA, Brown DC, Rush JE, et al. Prediction of first onset of congestive heart failure in dogs with degenerative mitral valve disease: the PREDICT cohort study. J Vet Cardiol 2012;14:193-202.
104. Takemura N, Toda N, Miyagawa Y, et al. Evaluation of Plasma N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) Concentrations in Dogs with Mitral Valve Insufficiency. J Vet Med Sci 2009;71:925-929.
105. Ruaux C, Scollan K, Suchodolski JS, et al. Biologic variability in NT-proBNP and cardiac troponin-I in healthy dogs and dogs with mitral valve degeneration. Vet Clin Pathol 2015;44:420-430.
106. Winter RL, Saunders AB, Gordon SG, et al. Biologic variability of N-terminal pro-brain natriuretic peptide in healthy dogs and dogs with myxomatous mitral valve disease. J Vet Cardiol 2017.
107. Sjostrand K, Wess G, Ljungvall I, et al. Breed differences in natriuretic peptides in healthy dogs. J Vet Intern Med 2014;28:451-457.
108. Suzuki S, Ishikawa T, Hamabe L, et al. The effect of furosemide on left atrial pressure in dogs with mitral valve regurgitation. J Vet Intern Med 2011;25:244-250.
109. Harada K, Ukai Y, Kanakubo K, et al. Comparison of the diuretic effect of furosemide by different methods of administration in healthy dogs. J Vet Emerg Crit Care (San Antonio) 2015;25:364-371.
110. Rasmussen CE, Falk T, Zois NE, et al. Heart rate, heart rate variability, and arrhythmias in dogs with myxomatous mitral valve disease. J Vet Intern Med 2012;26:76-84.
111. Boswood A, Haggstrom J, Gordon SG, et al. Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study-A Randomized Clinical Trial. J Vet Intern Med 2016;30:1765-1779.
112. Kvart C, Haggstrom J, Pedersen HD, et al. Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. J Vet Intern Med 2002;16:80-88.
113. Pouchelon JL, Jamet N, Gouni V, et al. Effect of benazepril on survival and cardiac events in dogs with asymptomatic mitral valve disease: A retrospective study of 141 cases. J Vet Intern Med 2008;22:905-914.
114. Atkins CE, Haggstrom J. Pharmacologic management of myxomatous mitral valve disease in dogs. J Vet Cardiol 2012;14:165-184.
115. Mizuno T, Mizukoshi T, Uechi M. Long‐term outcome in dogs undergoing mitral valve repair with suture annuloplasty and chordae tendinae replacement. J Small Anim Pract 2013;54:104-107.
116. Richards JM, Farrar EJ, Kornreich BG, et al. The mechanobiology of mitral valve function, degeneration, and repair. J Vet Cardiol 2012;14:47-58.
117. Birettoni F, Caivano D, Patata V, et al. Canine pulmonary vein-to-pulmonary artery ratio: echocardiographic technique and reference intervals. J Vet Cardiol 2016;18:326-335.
118. Merveille AC, Bolen G, Krafft E, et al. Pulmonary Vein-to-Pulmonary Artery Ratio is an Echocardiographic Index of Congestive Heart Failure in Dogs with Degenerative Mitral Valve Disease. J Vet Intern Med 2015;29:1502-1509.
119. Kellihan HB, Stepien RL. Pulmonary hypertension in canine degenerative mitral valve disease. J Vet Cardiol 2012;14:149-164.
120. Serres FJ, Chetboul V, Tissier R, et al. Doppler echocardiography–derived evidence of pulmonary arterial hypertension in dogs with degenerative mitral valve disease: 86 cases (2001–2005). J Am Vet Med Assoc 2006;229:1772-1778.
121. Kim JH, Park HM. Usefulness of conventional and tissue Doppler echocardiography to predict congestive heart failure in dogs with myxomatous mitral valve disease. J Vet Intern Med 2015;29:132-140.
122. Jacques DC, Pinsky MR, Severyn D, et al. Influence of alterations in loading on mitral annular velocity by tissue Doppler echocardiography and its associated ability to predict filling pressures. CHEST Journal 2004;126:1910-1918.
123. TESHIMA K, ASANO K, SASAKI Y, et al. Assessment of left ventricular function using pulsed tissue Doppler imaging in healthy dogs and dogs with spontaneous mitral regurgitation. J Vet Med Sci 2005;67:1207-1215.
124. Borgarelli M, Zini E, D'Agnolo G, et al. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol 2004;6:27-34.
125. Jung SW, Sun W, Griffiths LG, et al. Atrial Fibrillation as a Prognostic Indicator in Medium to Large-Sized Dogs with Myxomatous Mitral Valvular Degeneration and Congestive Heart Failure. J Vet Intern Med 2016;30:51-57.
126. Buchanan JW, Bucheler J. Vertebral scale system to measure canine heart size in radiographs. JOURNAL-AMERICAN VETERINARY MEDICAL ASSOCIATION 1995;206:194-194.
127. Hansson K, Haggstrom J, Kvart C, et al. Interobserver Variability of Vertebral Heart Size Measurements in Dogs with Normal and Enlarged Hearts. Vet Radiol Ultrasound 2005;46:122-130.
128. Jepsen-Grant K, Pollard RE, Johnson LR. Vertebral heart scores in eight dog breeds. Vet Radiol Ultrasound 2013;54:3-8.
129. Lord P, Hansson K, Kvart C, et al. Rate of change of heart size before congestive heart failure in dogs with mitral regurgitation. J Small Anim Pract 2010;51:210-218.
130. Lord P, Hansson K, Carnabuci C, et al. Radiographic heart size and its rate of increase as tests for onset of congestive heart failure in Cavalier King Charles Spaniels with mitral valve regurgitation. J Vet Intern Med 2011;25:1312-1319.
131. Oui H, Oh J, Keh S, et al. Measurements of the pulmonary vasculature on thoracic radiographs in healthy dogs compared to dogs with mitral regurgitation. Vet Radiol Ultrasound 2015;56:251-256.
132. Serres F, Chetboul V, Tissier R, et al. Chordae tendineae rupture in dogs with degenerative mitral valve disease: prevalence, survival, and prognostic factors (114 cases, 2001-2006). J Vet Intern Med 2007;21:258.
133. Chetboul V, Tissier R. Echocardiographic assessment of canine degenerative mitral valve disease. J Vet Cardiol 2012;14:127-148.
134. Sargent J, Muzzi R, Mukherjee R, et al. Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease. J Vet Cardiol 2015;17:1-12.
135. Muzzi RA, de Araujo RB, Muzzi LA, et al. Regurgitant jet area by Doppler color flow mapping: quantitative assessment of mitral regurgitation severity in dogs. J Vet Cardiol 2003;5:33-38.
136. Wesselowski S, Borgarelli M, Bello NM, et al. Discrepancies in identification of left atrial enlargement using left atrial volume versus left atrial-to-aortic root ratio in dogs. J Vet Intern Med 2014;28:1527-1533.
137. Hansson K, Haggstrom J, Kvart C, et al. Left Atrial to Aortic Root Indices Using Two-Dimensional and M-Mode Echocardiography in Cavalier King Charles Spaniels with and without Left Atrial Enlargement. Vet Radiol Ultrasound 2002;43:568-575.
138. Hollmer M, Willesen JL, Tolver A, et al. Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease. J Vet Cardiol 2016.
139. Bonagura J, Schober K. Can ventricular function be assessed by echocardiography in chronic canine mitral valve disease? J Small Anim Pract 2009;50:12-24.
140. Borgarelli M, Savarino P, Crosara S, et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med 2008;22:120-128.

Web Page
141. IRIS Staging of CKD (modified 2015),Retrieved June 4, 2017, from http://www.iris-kidney.com/guidelines/staging.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top