跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖昱倫
研究生(外文):Yu-Lun Liao
論文名稱:硫酸吲哚與纖維母細胞生長因子-23在貓慢性腎病之相關性及在腎病惡化之預測
論文名稱(外文):Association of Indoxyl sulfate with Fibroblast growth factor 23 in feline chronic kidney disease and their predictive value in renal progression
指導教授:周濟眾
指導教授(外文):Chi-Chung Chou
口試委員:陳文英李雅珍
口試委員(外文):Wen-Ying ChenYa-Jane Lee
口試日期:2017-06-02
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:慢性腎病尿毒素硫酸吲哚纖維母細胞生長因子-23
外文關鍵詞:Chronic kidney diseaseUremic toxinIndoxyl sulfateFibroblast growth factor-23
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫酸吲哚(IS)為一飲食中蛋白質來源的蛋白質結合性尿毒素,主要由腎臟排除。人醫研究指出,硫酸吲哚的濃度會隨著腎臟功能喪失而上升,且可能為慢性腎病病患出現骨質異常的原因之一。然而,在小動物醫學中,硫酸吲哚與慢性腎病的關係尚未被完全確立。因此本研究想評估血漿中硫酸吲哚與纖維母細胞生長因子-23(FGF-23)此一參與礦物質代謝的賀爾蒙之間的相關性,並進一步探討是否硫酸吲哚的累積會惡化纖維母細胞生長因子-23對於磷離子的正常調控。此外,也探討硫酸吲哚及纖維母細胞生長因子-23在貓是否可作為慢性腎病惡化的預測因子。本研究共納入20隻健康貓隻作為對照組及73隻臨床穩定的慢性腎病貓隻作為疾病組進行研究。所有納入的腎病貓隻均依照國際腎臟權益組織(IRIS)所制定之慢性腎病級別進行分組,並將血漿肌酸酐濃度在3個月的追蹤期間上升超過 0.5mg/dL 或進展到 IRIS 的下一個分期的病例定義為腎病惡化,依據惡化與否進行分組。結果顯示,血漿中硫酸吲哚與纖維母細胞生長因子-23的濃度均隨著腎病嚴重程度的增加而上升。纖維母細胞生長因子-23的濃度與尿素氮、肌酸酐、白蛋白、血容比、磷離子、鈉離子及硫酸吲哚均有顯著相關。而經逐步多項式線性回歸分析排除干擾因子後,僅硫酸吲哚與纖維母細胞生長因子-23存在統計學上的顯著關係。研究亦顯示相較於非惡化組別,第二期及第三期慢性腎病貓隻的硫酸吲哚與纖維母細胞生長因子-23濃度在腎病惡化組別均顯著上升。此外,以接收者操作特徵曲線(ROC)進行以硫酸吲哚及纖維母細胞生長因子-23的濃度預測腎病惡化能力之評估,結果可見不論是在第二期或第三期的慢性腎病貓隻,其曲線下面積均大於0.75 (P<0.05),顯示此兩者均可作為一個有潛力的腎病惡化預測指標。總體而言,本研究顯示在慢性腎病貓隻中硫酸吲哚與纖維母細胞生長因子-23之間存在著顯著相關性。且硫酸吲哚與纖維母細胞生長因子-23均可作為貓隻早期偵測慢性腎病惡化之指標。
Indoxyl sulfate (IS), a protein-bound uremic toxin derived from dietary protein and mainly eliminated by renal excretion, was reported to not only increase with the severity of impaired renal function but also may be one of the factors involved in bone abnormalities in human CKD patients. It is not yet known whether or not the same correlation between IS and FGF-23 holds true in small animal. The purposes of this study are to measure the concentration of IS and fibroblast growth factor-23(FGF-23), a phosphaturic hormone involves in mineral metabolism, in various stages of CKD cats to elucidate whether the accumulation of IS making the level of phosphate higher by worsened FGF-23 secretion and to evaluate the possibility of using IS and FGF-23 as predictive markers of CKD progression in cats. Totally 93 feline cases, including 20 clinical healthy cats and 73 feline CKD case were collected from two veterinary teaching hospitals. All feline CKD cases were grouped by the standard of International Renal Interest Society (IRIS) staging system. Patient background, general biochemistry, plasma IS and FGF-23 levels were investigated at the same time. CKD progression was defined as increasing one IRIS stage and/or plasma creatinine level raises in 0.5 mg/dL in the same stage within 3 months. The results showed that plasma IS and FGF-23 concentrations elevated concurrently with impairing renal function. The FGF-23 levels were significantly associated with blood urea nitrogen, creatinine, albumin, hematocrit, phosphate, sodium and IS. After adjusting confounding factors by stepwise multiple linear regression analysis, only IS retained statistical significance in association with FGF-23. Comparing with non-progression group in cats, both IS and FGF-23 significantly increased in renal progression group (P<0.05). Area under curve (AUC) of IS, FGF-23 and the combination of both to predict renal progression were above 0.75 in receiver operator characteristic (ROC) curve analysis, which means both IS and FGF-23 could be valuable markers. In conclusion, this study indicated that IS retained independent correlation with FGF-23 in CKD, and both IS and FGF-23, as well as combination of both, could be indicators for early detection of CKD progression in cats.
中文摘要 .............................................i
Abstract……..........................................ii
Table of contents….................................iii
List of tables................ .................... viざ
List of figures.....................................viiし
List of abbreviation................................ixす
Chapter 1 Introduction...............................1
Chapter 2 Literature review…………………………………………3
2.1. Chronic kidney disease…………………………………3
2.1.1. Background of CKD………………………………3
2.1.2. IRIS Stages of feline CKD…………………………3
2.1.3. Chronic kidney disease- mineral and bone
disorder……5
2.1.4 Early indicators of CKD…………………………5
2.2. Uremic toxin………………………………………………5
2.2.1. Definition of Uremic toxin………………………6
2.2.2. Pathobiological origin and removal of uremic toxin…………………6
2.2.3. Classification of uremic toxins………………6
2.3. Indoxyl sulfate…………………………………………………10
2.3.1. Metabolism of indoxyl sulfate……………………10
2.3.2. Ways of Indoxyl sulfate accumulation………11
2.3.3. Toxic effect of indoxyl sulfate in CKD…13
2.4. Fibroblast growth factor-23 (FGF-23)……………………16
2.4.1. Physiological functions of FGF-23……………16
2.4.2. FGF-23-Kloth receptor complex…………………17
2.4.3. Target organ of FGF-23……………………18
2.4.4 Phosphate homeostasis in FGF-23-vitamin D-PTH axis…………………20
2.4.5. Actions of FGF-23 in CKD patients………22
2.5 The link between indoxyl sulfate and fibroblast growth factor-23………………23
Chapter 3 Materials and methods……………………………………………………25
3.1. Patient selection……………………………………………25
3.2. Sample collection………………………………………………25
3.3. Study design……………………………………………………26
3.4. Measurement of IS by high performance liquid chromatography………………28
3.4.1. Chemicals and reagents……………………………28
3.4.2. Supplies………………………………………………28
3.4.3. Apparatus………………………………………………28
3.4.4. HPLC conditions………………………………………29
3.4.5. Sample extraction..…………………………………30
3.4.6. Analytical standard…………………………………30
3.4.7 Calibration curve……………………………………31
3.4.8. Recovery……………………………………………31
3.4.9. Limit of detection and Limit of quantification……31
3.5. Measurement of FGF-23 by commercial feline FGF-23 ELISA kit…………31
3.6. Statistical analysis……………………………………………………………32
Chapter 4 Result…………………………………………………34
4.1. Validation of IS and FGF-23 measurement method………34
4.2 Characteristic of study population…………………………36
4.3 Plasma levels of indoxyl sulfate in cats with different CKD stages…………41
4.4 Plasma levels of FGF-23 in cats with different CKD stages………………41
4.5 Correlations between concentrations of indoxyl sulfate and clinical biochemical parameters in feline CKD …………42
4.6 Correlations between concentrations of FGF-23 and clinical biochemical parameters in feline CKD………………44
4.7 Correlations between concentrations of IS, FGF-23 and phosphate…………47
4.8 IS and FGF-23 as predictors for progression of CKD……48
4.9 The correlation between IS, FGF-23 and phosphate binder treatment…………59
Chapter 5 Discussion…………………………………………………61
5.1 The relationship between IS and FGF-23 in feline CK…61
5.2 The definition of CKD progression………………………62
5.3 IS and FGF-23 were both associated with CKD progression…63
5.4 The predictive ability of IS and FGF-23 in CKD progression…………63
5.5 Association of IS or FGF-23 to other parameters……65
5.6 The correlation between IS, FGF-23 and phosphate binder treatment…………66
5.7 Small scale study of SDMA in CKD…………………………67
5.8 Limitations in this study…………………………………67
5.9 Conclusion………………………………………………………67
Reference………………………………………………………………69
1.Adijiang A and Niwa T. An oral sorbent, AST-120, increases Klotho expression and inhibits cell senescence in the kidney of uremic rats. Am J Nephrol 2010; 31: 160-164.
2.Adijiang A, Shimizu H, Higuchi Y, Nishijima F and Niwa T. Indoxyl sulfate reduces klotho expression and promotes senescence in the kidneys of hypertensive rats. J Ren nutr 2011; 21: 105-109.
3.Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE and Erben R. FGF-23 regulates renal sodium handling and blood pressure. EMBO Molecular Med 2014; 6: 744-759.
4.Antoniucci DM, Yamashita T and Portale AA. Dietary phosphorus regulates serum fobroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 2006; 91: 3144-3149.
5.Bai X, Miao D, Goltzman D, Goltzman D and Karaplis AC. Early lethality in Hyp mice with targeted deletion of PTH gene. Endocrinol 2007; 148: 4974–4983.
6.Bai X, Miao D, Li J, Goltzman D and Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinol 2004; 145(11): 5269-5279.
7.Beenken A and Mohammadi M. The structural biology of the FGF19 subfamily. Adv Exp Med Biol 2012; 728: 1-24.
8.Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T and Silver J. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007; 117: 4003–4008.
9.Bergström J and Fürst P. Uremic toxins. Kidney int Suppl 1978; 8: S9-12.
10.Bergwitz C and Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 2010; 61: 91–104.
11.Birn H and Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int 2006; 69: 440-449.
12.Bolignano D, Coppolino G, Romeo A, De Paola L, Buemi A, Lacquaniti A, Nicocia G, Lombardi L and Buemi M. Neutrophil gelatinase associated lipocalin (NGAL) reflects iron status in haemodialysis patients. Nephrol Dial Transplant 2009; 24: 3398–3403.
13.Bonewald LF and Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol 2013; 28: 563-568.
14.Chakrabarti S, Syme HM and Elliott J. Clinicopathological variables predicting progression of azotemia in cats with chronic kidney disease. J Vet Intern Med 2012; 26: 275-281.
15.Cheng FP, Hsieh MJ, Chou CC, Hsu WL and Lee YH. Detection of indoxyl sulfate levels in dogs and cats suffering from naturally occurring kidney diseases. The Vet J 2015; 205: 399-403.
16.Coe LM, Madathil SV, Casu C, Lanske B, Rivella S and Sitara D. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J biolo chem 2014; 289: 9795-9810.
17.Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F and Levey AS. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39: 920-929.
18.Dahlem DP, Neiger R, Schweighauser A, Francey T, Yerramilli M, Obare E and Steinbach SM. Plasma Symmetric Dimethylarginine Concentration in Dogs with Acute Kidney Injury and Chronic Kidney Disease. J Vet Intern Med 2017;doi: 10.1111/jvim.14694.
19.DeLuca S, Sitara D, Kang K, Marsell R, Jonsson K, Taguchi T, Erben RG, Razzaque MS and Lanske B. Amelioration of the premature ageing-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23. J Pathol 2008; 216: 345-355.
20.Derici U and Nahas EA. Vascular calcifications in uremia: old concepts and new insights. Semin Dial 2006; 19: 60-68.
21.Devine E, Krieter DH, Rüth M, Jankovski J and Lemke HD. Binding affinity and capacity for uremic toxin indoxyl sulfate. Toxin 2014; 6: 416-429.
22.DiBartola SP, Rutgers HS, Zack PM and Tarr MJ. Clinicopathologic findings associated with chronic renal disease in cats: 74 cases (1973–1984). J Am Vet Med Assoc 1987; 190: 1196–1202.
23.Dobre M, Meyer TW and Hostetter TH. Searching for uremic toxins. Clin J Am Soc Nephrol 2013; 8: 322-327.
24.Donate-Correa J, Muros-de-Fuentes M, Mora-Ferna´ndez C and Navarro-Gonza´lez JF. FGF23/Klotho axis: Phosphorus, mineral metabolism and beyond. Cytokine & Growth Factor Rev 2012; 23: 37–46.
25.Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney disease - a one-year follow-up study. Kidney Blood Press Res 2014; 39: 50-57.
26.Ellis RJ, Small DM, Vesey D.A, Johnson DW, Francis R, Vitetta L, Gobe GC and Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrol 2016; 21: 170-177.
27.Enomoto A, Takeda M, Tojo A, Sekine T, Cha SH, Khamdang S, Takayama F, Aoyama I, Nakamura S, Endou H and Niwa T. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its Nephrotoxicity. J Am Soc Nephrol 2002; 13: 1711-1720.
28.Eswarakumar VP, Lax I and Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139-49.
29.Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA and Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int 2011; 80: 806–821.
30.Fedak D, Bigaj K and Sulowicz W. Fibroblast growth factor-23 (FGF-23). Part I. Significance in phosphate homeostasis and bone metabolism. Przegl Lek 2011; 68: 231-238.
31.Fliser D, Kkollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E and Kronenberg F. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kindey disease (MMKD) study. J Am Soc Nephrol 2007; 18: 2601-2608.
32.Foley RN, Parfrey PS, and Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 1998; 32: S112-S119.
33.Forster IC, Hernando N, Biber J and Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 2006; 70: 1548-1559.
34.Fukagawa M, Akizawa T, and Kurokawa K. Is aplastic osteodystrophy a disease of malnutrition? Curr Opin Nephrol Hypertens 2000; 9: 363-367.
35.Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM and Baum M. Regulation of Renal Phosphate Transport by FGF23 is Mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol 2014; 306: F351-F358.
36.Gattineni J and Baurm M. Regulation of phosphate transport by fibroblast growth factor-23(FGF-23): implications for disorders of phosphate metabolism. Pediatr Nephrol 2010; 25:591-601.
37.Geddes RF, Finch NC, Elliott J and Syme HM. Fibroblast growth factor 23 in feline chronic kidney disease. J Vet Intern Med 2013; 27: 234-241.
38.Gelasco AK and Raymond JR. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal physiol 2006; 290: F1551-F1558.
39.Glorieux G and Tattersall J. Uraemic toxins and new methods to control their accumulation: game changers for the concept of dialysis adequacy. Clin Kidney J 2015; 8: 353–362.
40.Guo YC and Yuan Q. Fibroblast growth factor 23 and bone mineralization. Int J Oral Sci 2015; 7: 8–13.
41.Gutierrez O, Isakova T, Rhee F, Shah A, HolmesJ, Collerone G, Juppner H and Wolf M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005; 16: 2205-2215.
42.Hall JA, Yerramilli M, Obare E, Yerramilli M and Jewell DE. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med 2014; 28: 1676-1683.
43.Hansen D, Rasmussen K, Pedersen SM, Rasmussen LM and Brandi L. Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol. Nephrol Dial Transplant 2012; 27: 2263–2269.
44.Hruska KA, Mathew S, Lund R, Qiu P and Pratt R. Hyperphosphatemia of Chronic Kidney Disease. Kidney Int 2008; 74(2): 148–157.
45.Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS and Hobbs FDR. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. PLOS One 2016; 11(7): e0158765.
46.Humphreys BD, Xu F, Sabbisetti V, Grgic I, Naini SM, Wang N, Chen G, Xiao S, Patel D, Henderson JM, Ichimura T, Mou S, Soeung S, McMahon AP, Kuchroo VK and Bonventre JV. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013; 123: 4023-4035.
47.Iguchi A, Kazama JJ, Yamamoto S, Yoshita K, Watanabe Y, Lino N and Narita I. Administration of ferric citrate hydrate decreases circulating FGF-23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron 2015; 131: 161-166.
48.Imanishi Y, Inaba M, Nakatsuka K, Nagasue K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T, Shoji T, Ishimura E and Nishizawa Y. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004; 65: 1943–1946.
49.Isakova T, Gutierrez O, Shah A, Castaldo L, Holmes J, Lee H and Wolf M. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol 2008; 19: 615–623.
50.Isakova T, Wahl P, Vargas G, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CAM, Lash JP, Hsu CY, Leonard MB and Wolf M. FGF23, PTH and Phosphorus Metabolism in the Chronic Renal Insufficiency Cohort. Kidney Int 2011; 79(12): 1370–1378.
51.Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 2014; 128: 303-311.
52.Kazama JJ, Gejyo F, Shigematsu T and Fukagawa M. Role of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism. Ther Aphr Dial 2005; 9: 328-330.
53.Kern EF, Erhard P, Sun W, Genuth S and Weiss MF. Early urinary markers of diabetic kidney disease: a nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis 2010; 55: 824–834.
54.Kielstein JT, Salpeter SR, Bode-Boegar SM, Cooke JP and Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal fuction-a meta-analysis. Nephrol Dial Transplant 2006; 21: 2446-2451.
55.Kim YH, Kwak KA, Gil HW, Song HY and Hong SY. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol Toxicol 2013; 14: 60-68.
56.Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G and Larsson TE. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 2007; 195: 125–131.
57.Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kumek E, Iwasakik H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R and Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51.
58.Kurosu H, Yamamoto M Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP and Kuro-o M. Suppression of aging in mice by the hormone Klotho. Sci 2005; 309: 1829-1833.
59.Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H and Jonsson KB. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1 (I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinol 2004; 145(7): 3087-3094.
60.Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M and Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 2004; 29(4): 91-99.
61.Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ and Wu CJ. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 2011; 25: 191-197.
62.Lin CJ, Liu HL, Pan CF, Chuang CK, Jayakumar T, Wang TJ, Chen HH and Wu CJ. Indoxyl Sulfate Predicts Cardiovascular Disease and Renal Function Deterioration in Advanced Chronic Kidney Disease. Arch Med Res 2012; 43: 451-456.
63.Lin CJ, Pan CF, Chuang CK, Liu HL, Sun FJ, Wang TJ, Chen HH and Wu CJ. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J med sci 2014; 347: 370-376.
64.Liu S, Vierthaler L, Tang W, Zhou J and Quarles LD. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 2008; 19(12): 2342-2350.
65.Liu S and Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol 2007; 18: 1637–1647.
66.Liu S, Zhou J, Tang W, Jiang X, Rowe DW and Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291: E38–E49.
67.Lulich JP. Feline renal failure: questions, answers, questions. Compend Contin Educ Vet 1992; 14: 127-152.
68.Marino CL, Lascelles BDX, Vaden SL, Gruen ME and Marks SL. The prevalence and classification of chronic kidney disease in cats randomly selected within four age groups and in cats recruited for degenerative joint disease studies. J Feline Med Surg 2014; 16(6): 465–472.
69.Marks J, Edward S, Debnam ES and Unwi RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 2010; 299: F285–F296.
70.Martin A, David V and Quarles LD. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol Rev 2012; 92(1): 131-155.
71.Meijers BKI and Evenepoel P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant 2011; 26: 759-761.
72.Meireles CL, Price SR, Pereira AM, Carvalhaes JT and Mitch WE. Nutrition and chronic renal failure in rats: what is an optimal dietary protein? J Am Soc Nephrol 1999; 10(11): 2367-2373.
73.Moe S, Drüeke T and Cunningham J. Kidney disease: Improving Global Outcomes (KDIGO). Kidney Int 2006; 69: 1945-1953.
74.Mount DB and Yu AS. Transport of inorganic solutes: sodium, chloride, potassium, magnesium, calcium, and phosphate. In: Brenner BM. ed. The Kidney, 8th edn. Philadelphia, PA: Elsevier Saunders 2008: 156–213.
75.Mutsaers HAM, Stribos EGD, Glorieux G, Vanholder R and Olinga P. Chronic Kidney Disease and Fibrosis: The Role of Uremic Retention Solutes. Front Med 2015; 2: 60-66.
76.Nakajima H, Takenaka M, Kaimori JY, Nagasawa Y, Kosugi A, Kawamoto S, Imai E, Hori M and Okubo K. Gene expression profile of renal proximal tubules regulated by proteinuria. Kidney Int 2002; 61: 1577-1587.
77.Nakamura T, Sugaya T, Kawagoe Y, Suzuki T, Inoue T and Node K. Effect of pitavastatin on urinary liver-type fatty-acid-binding protein in patients with nondiabetic mild chronic kidney disease. Am J Nephrol 2006; 26: 82–86.
78.Nii-Kono T, Iwasaki Y, Uchida M, Fujieda A, Hosokawa A, Motojima M, Yamato H, Kurokawa K and Fukagawa M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int 2007; 71: 738-743.
79.Niwa T. Indoxyl Sulfate, A Tryptophan Metabolite, Induces Nephro-Vascular Toxicity. Biotechnol Biotechnol Eq 2012; 26: 129-133.
80.Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 2010; 72: 1-11.
81.Niwa T and Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 1994; 124: 96-104.
82.Niwa T, Tsukushi S, Ise M, Miyazaki T, Tsubakihara Y, Owada A and Shiigai T. Indoxyl sulfate and progression of renal failure: effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner Electrolyte Metab 1997; 23: 179-84.
83.Owada S, Goto S, Bannai K, Hayashi H, Nishijima F and Niwa T. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am J Nephrol 2008; 28: 446-454.
84.Penido MGMG and Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol 2012; 27: 2039-2048.
85.Ramezani A and Raj DS. The gut microbiome, kidney disease and targeted interventions. J Am Soc Nephrol 2014; 25: 657-670.
86.Ramon I, Kleynen P, Body JJ and Karmali R. Fibroblast growth factor 23 and its role in phosphate homeostasis. Eur J Endocrinol 2010; 162: 1-10.
87.Razzaque MS. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 2009; 5(11): 611–619.
88.Renke M, Tylicki L, Rutkowski P, Knap N, Zietkiewicz M, Neuwelt A, Aleksandrowicz E, Lysiak-Szydlowska W, Wozniak M and Rutkowski B. Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease - placebo controlled, randomized, cross-over study. Acta Biochim Pol 2010; 57:119-123.
89.Reynolds BS and Lefebvre HP. Pathophysiology and risk factors- what do we know. J Feline Med Surg 2013; 15: 3–14.
90.Rodriguez-Osorio L, Zambrano DP, Gracia-Iguacel C, Rojas-Rivera J, Ortiz A, Egido J and Parra EG. Use of sevelamer in chronic kidney disease: beyond phosphorus control. Nefrologia 2015; 35(2): 207-217.
91.Rossi M, Campbell KL and Johnson DW. Indoxyl sulphate and p-cresyl sulphate: therapeutically modifiable nephrovascular toxins. OA Nephrol 2013; 1: 13-20.
92.Rossi M, Campbell KL, Johnson DW, Stanton T, Vesey DA, Coombes JS, Weston KS, Hawely CM, McWhinney BC, Ungerer JPJ and Isbel N. Protein-bound uremic toxins inflammation and oxidative stress: A cross-sectional study in stage 3-4 chronic kidney disease. Arch Med Res 2014; 45: 309-317.
93.Ruben P, Liesbeth V, Kathleen C, Bert B, Pieter E and Bjorn M. Estimated Glomerular Filtration Rate Is a Good Marker of Renal Clearance of P-Cresyl Sulfate and Indoxyl Sulfate. Acta Clin Belg 2013; 68: 319-319.
94.Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K and Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+ -dependent phosphate cotransportactivityand1alpha 25-dihydroxyvitaminD3 production. J Biol Chem 2003; 278: 2206–2211.
95.Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K and Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113: 561-568.
96.Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S and Yamashita T. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004; 314(2): 409-414.
97.Smet D, David F, SandraP, Vankaer J, Lesaffer G, Dhondt A, Lameire N and Vanholder R. A sensitive HPLC method for quantification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta 1998; 278: 1-21.
98.Sliver J and Naveh-Many. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013; 9: 641–649.
99.Soares AA, Eyff TF, Campani RB, Ritter L, Camargo JL and Silveiro SP. Glomerular filtration rate measurement and prediction equations. Clin Chem Lab Med 2009; 47: 1023-1032.
100.Spanaus KS, Kollerits B, Ritz E, Hersberger M, Kronenberg F and von Eckardstein A. Serum creatinine, cystatin C, and beta-trace protein in diagnostic staging and predicting progression of primary non-diabetic chronic kidney disease. Clin Chem 2010; 56: 740–749.
101.Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, Rossert J, Van Lente F, Bruce RD, Zhang YL, Greene T and Levey AS. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3418 individuals with CKD. Am J Kidney Dis 2008; 51: 395-406.
102.Stubbs J, Liu S and Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial 2007; 20: 302-308.
103.Sun CY, Chang SC and Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal Renin-Angiotensin-Aldosterone system associated epithelial to mesenchymal transition. PLoS ONE 2012; 7: e34026.
104.Takeda Y, Komaba H, Goto S, Fujii H, Umezu M, Hasegawa H, Fujimori A, Nishioka M, Nishi S and Fukagawa M. Effect of Intravenous Saccharated Ferric Oxide on Serum FGF23 and Mineral Metabolism in Hemodialysis Patients. Am J Nephrol 2011; 33: 421-426.
105.Tomas G and Jaber BL. Convective therapies for removal of middle molecular weight uremic toxins in end-stage renal disease: a review of the evidence. Semin dial 2009; 22: 610-614.
106.Tsai MH, Leu JG, Fang YW and Liou HH. High fibroblast growth factor 23 levels associated with low hemoglobin levels in patients with chronic kidney disease stages 3 and 4. Med 2016; 95: e3049.
107.Turner CA, Watson SJ and Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76(1): 160-174.
108.Vanholder R. Low molecular weight uremic toxins. Crit Care Nephrol 1998: 855-868.
109.Vanholder R, Glorieux G, Smet RD and Lameire N. New insights in uremic toxins. Kidney Int 2003; 64: S6-S10.
110.Vanholder R, Schepers E, Pletinck A, Nagler EV and Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J Am Soc Nephrol 2014; 25: 1897-1907.
111.Vanholder R, Smet RD, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, Deyn PPD, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Stegmayr B, Stenvinkel P, Tetta C, Wanner C and Zidek W. Review on uremic toxins: Classification, concentration, and inter-individual variability. Kidney Int 2003; 63: 1934-1943.
112.Vanholder R, Laecke SV and Glorieux G. What is new in uremic toxicity? Pediatr Nephrol 2008; 23: 1211-1221.
113.Vervloet MG and Larsson TE. Fibroblast growth factor-23 and Klotho in chronic kidney disease. Kidney int 2011; 1: 130–135.
114.Vitetta L and Gobe G. Uremia and chronic kidney disease: the role of the gut microflora and therapies with pro- and prebiotics. Mol Nutr Food Res 2013; 00; 1-9.
115.Vlahako DV, Marathias KP and Madias NE. The role of renin-angiotensin system in the regulation of erythropoiesis. Am J Kidney Dis 2010; 56: 558-565.
116.Wallia R, Greenberg A, Piraino B, Mitro R and Puschett JB. Serum electrolyte patterns in end-stage renal disease. Am J Kidney Dis 1986; 8: 98-104.
117.Watanabe H, Miyamoto Y, Otagiri M and Maruyama T. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J Pharm Sci 2011; 100: 3682-3695.
118.Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, Tzen CY, Wang YC, Lin CY and Wu MS. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 2011; 26: 938-947.
119.Yamashita T. Structural and Biochemical Properties of Fibroblast Growth Factor 23. Ther Apher and Dial 2005; 9(4): 313–318.
120.Yamamoto H, Tsuruoka S, Ioka T, Ando H, Ito C, Akimoto T, Fujimura A, Asano Y and Kusano E. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int 2006; 69: 1780-1785.
121.Yu X, Ibrahimi OA, Goetz R, Zhang F, Davis SI, Garringer HJ, Linhardt RJ, Ornitz DM, Mohammadi M and White KE. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinol 2005; 146: 4647–4656.
122.Zirker L. The relationship between gut microbiota and CKD: Why use prebiotics in CKD patients. Renal Nutr Forum 2014; 33: 1.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊