跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡芳宜
研究生(外文):Fang-Yi Tsai
論文名稱:二甲雙胍對高脂飲食誘發肥胖之C57BL/6NCrlBltw小鼠肺腺癌模式之研究
論文名稱(外文):The study of metformin on lung carcinoma in high-fat diet-induced obese C57BL/6NCrlBltw mice
指導教授:陳文英陳文英引用關係
口試委員:陳春榮關宇翔
口試日期:2017-06-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:44
中文關鍵詞:二甲雙胍肥胖肺腺癌麩醯胺酸
外文關鍵詞:metforminobesitylung carcinomaglutamine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究發現肥胖、高血糖及高胰島素血症等會影響腫瘤的發生、進展和預後。腫瘤藉由改變代謝策略以滿足其快速生長的需求,例如增加葡萄糖的攝取、醣酵解及胺基酸代謝,尤其是麩醯胺酸(glutamine)的代謝。臨床前試驗及人類醫療流行病學的資料顯示使用metformin的第二型糖尿病患者具有較低的癌症罹患風險。然而,肥胖及相關代謝異常增加癌症罹患風險及惡性程度的作用機制複雜,目前仍須進一步的研究。因此,本研究的目的是探討二甲雙胍對皮下植入肺腺癌的正常體態小鼠與肥胖小鼠的腫瘤生長情況及對腫瘤代謝的影響。本實驗將五十九隻雄性C57BL/6NCrlBltw小鼠隨機分成八組:control diet + non-tumor + saline 組(CNS)、control diet + non-tumor + metformin 組(CNM)、control diet + tumor + saline 組(CTS)、control diet + tumor + metformin 組(CTM)、high-fat diet + non- tumor +saline 組(HNS)、high-fat diet + non- tumor + metformin組(HNM)、high-fat diet + tumor +saline組(HTS)及high-fat diet + tumor + metformin組(HTM)。依照組別之不同,分別餵予標準飼料及高脂飼料十週,之後標準飼料及高脂飼料各一半數的小鼠進行皮下腫瘤接種(5 X 104 LLC1 cells)。腫瘤移植後,連續三週、每日一次管餵投予metformin (300 mg/kg BW)。結果顯示十週的高脂飲食成功誘導肥胖及高血糖,而經過三週投藥期後,metformin能顯著改善此高血糖、高胰島素血症及胰島素阻抗的現象。肥胖小鼠的腫瘤生長明顯大於正常體態的小鼠,且有趣的是,metformin減輕了肥胖小鼠的腫瘤生長,而這種效應卻未見於正常體態的小鼠。西方墨點法的結果顯示肥胖腫瘤小鼠的胰島素傳訊路徑受到損害,而metformin能改善此損害。腫瘤移植後,正常體 態小鼠的血漿麩醯胺酸濃度顯著增加,但肥胖小鼠則未見相似變化。西方墨點法的結果顯示metformin調控肥胖腫瘤小鼠的肝臟麩醯胺酸代謝,增加其麩醯胺酸轉運蛋白(ASCT2)及麩醯胺酸酶(glutaminenase, GA)的蛋白質表現量,但減少麩醯胺酸合成酶(glutamine synthetase, GS)的蛋白質表現量。基於上述結果,我們證實metformin的抗癌作用可能涉及麩醯胺酸代謝的改變。
Previous studies reveal that obesity, hyperglycemia and hyperinsulinemia have an impact on tumorigenesis, progression and prognosis. Tumor cells alter metabolic strategies, such as enhancing glucose uptake, glycolysis and amino acid metabolism, especially for glutamine metabolism. Epidemiological and preclinical studies have shown that diabetic patients treating by metformin had lower cancer burden. However, the role of metformin on tumor metabolism is still unclear. Therefore, the aim of this study is to investigate the effects of metformin on isograft tumor growth and tumor metabolism produced by subcutaneously implantation of Lewis lung adenocarcinoma (LLC1) to lean and obese C57BL/6NCrlBltw mice. Fifty-nine male mice were randomly divided into eight groups: control diet + non-tumor + saline (CNS); control diet + non-tumor + metformin (CNM); control diet + tumor + saline (CTS); control diet + tumor + metformin (CTM); high-fat diet + non- tumor +saline (HNS); high-fat diet + non- tumor + metformin (HNM); high-fat diet + tumor +saline (HTS) and high-fat diet + tumor + metformin (HTM). Mice were fed with control diet or high-fat diet for 10 weeks. Half lean and obese mice were subcutaneously inoculated with 5 X 104 LLC1 cells. After implantation, daily administration of metformin (300 mg/kg BW) was delivered by oral gavage for 3 weeks. Results revealed that high-fat diet-fed for 10 weeks successfully induced obesity and hyperglycemia and metformin treatment effectively improved hyperglycemia, hyperinsulinemia and insulin resistance. There was an increased tumor growth in obese mice than in lean mice. Intriguingly, metformin attenuated tumor growth in obese mice and that effect was minor in lean mice. Results of Western blotting showed that tumor-bearing obese mice impaired hepatic insulin actions and the impairment was improved by metformin. Isograft tumor implantation increased plasma glutamine level in lean mice but not in obese mice. Results of Western blotting showed that metformin modulated hepatic glutamine metabolism in tumor-bearing obese mice by further increasing ASCT2 transporter and glutaminase expression but decreasing glutamine synthetase expression. Based on these results, we concluded that metformin have an anti-neoplastic effect which maybe involve alteration of glutamine metabolism.
摘要 i
Abstract ii
目次 iii
圖次 v
表次 vi
第一章 前言 - 1 -
第二章 文獻探討 - 2 -
第一節 肥胖與代謝異常 - 2 -
1.1 代謝症候群 - 2 -
1.2 胰島素阻抗 - 2 -
1.3 胺基酸代謝異常 - 3 -
第二節 肥胖/第二型糖尿病與腫瘤之關聯 - 3 -
2.1 流行病學上的證據 - 3 -
2.2 可能之作用機制 - 4 -
第三節 腫瘤的代謝重新規劃 - 4 -
3.1 基本介紹 - 4 -
3.2 腫瘤好比是葡萄糖及麩醯胺酸的代謝陷阱 - 5 -
3.3 腫瘤由宿主組織中提取麩醯胺酸及其他必須胺基酸 - 5 -
3.4 宿主組織之麩醯胺酸代謝酵素異常 - 6 -
3.5 腫瘤之麩醯胺酸降解作用 - 6 -
3.6 腫瘤之代謝多功能性:葡萄糖代謝與麩醯胺酸降解之相互作用 - 7 -
3.7 麩醯胺酸酶同工酶:於腫瘤發生時扮演相反的角色 - 8 -
第四節 二甲雙胍Metformin - 8 -
4.1 發展簡史 - 8 -
4.2 臨床應用 - 9 -
4.3 抗癌作用:流行病學調查 - 9 -
4.4 抗癌作用:可能之作用機制 - 9 -
第五節 研究目的與實驗設計 - 10 -
第三章 材料與方法 - 16 -
第一節 實驗動物與試驗規劃 - 16 -
第二節 禁食血糖與血漿胰島素濃度 - 16 -
第三節 恆定模式評估指數HOMA-IR - 16 -
第四節 血漿麩醯胺酸濃度 - 17 -
第五節 臟器萃取與西方墨點法 - 17 -
第六節 統計分析 - 17 -
第四章 結果 - 18 -
第一節 體重變化 - 18 -
第二節 攝食量 - 18 -
第三節 攝食熱量 - 18 -
第四節 腫瘤重量 - 18 -
第五節 禁食血糖 - 18 -
第六節 血漿胰島素濃度 - 19 -
第七節 恆定模式評估指數(Homeostasis Model Assessment Index) - 19 -
第八節 血漿麩醯胺酸濃度 - 20 -
第九節 肝臟胰島素傳訊路徑及麩醯胺酸代謝之相關蛋白質表現量 - 20 -
第五章 討論 - 33 -
第六章 結論 - 37 -
參考文獻 - 38
林建良、許惠恒、沈宜靜。2013。二甲雙胍類降血糖藥物Metformin:過去、現在與未來。內科學誌24,477-486。
Abou-Khali WH, Yunis AA, Abou-Khalil S. 1983. Prominent glutamine oxidation activity in mitochondria of hematopoietic tumors. Cancer Res 43, 1990-1993.
Aledo JC. 2004. Glutamine breakdown in rapidly dividing cells: waste or investment? Bioessays 26, 778-785.
Aledo JC, Gómez-Fabre PM, Olalla L, Márquez J. 2000. Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11, 1107-1110.
Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. 2011. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 30, 1174-1182.
Algire C, Zakikhani M, Blouin MJ, Shuai JH, Pollak M. 2008. Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr Relat Cancer 15, 833-839.
Altman BJ, Stine ZE, Dang CV. 2016. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16, 619-34.
Bode BP, Fuchs BC, Hurley BP. 2002. Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am J Physiol Gastrointest Liver Physiol 283, G1062-1073.
Bray A, Sharon L, Crandall P, Vanita R. 2012. Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes care 35, 731-737.
Bungard CI and McGivan JD. 2004. Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382, 27-32.
Cairns RA, Harris IS, Mak TW. 2011. Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95.
Campos-Sandoval JA, López de la Oliva AR, Lobo C, Segura JA, Matés JM, Alonso FJ, Márquez J. 2007. Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int J Biochem Cell Biol 39, 765-773.
Carrascosa JM, Martínez P, Núñez de Castro I. 1984. Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascitic tumor cells. Cancer Res 44, 3831-3835.
Chen HP, Shieh JJ, Chang CC, Chen TT, Lin JT, Wu MS, Lin JH, Wu CY. 2013. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut 62, 606-615.
Chen MK, Espat NJ, Bland KI, Copeland EM 3rd, Souba WW. 1993. Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney. Ann Surg 217, 655-666.
Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL. 2012. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125, 2222-2231.
Chevalier S, Marliss EB, Morais JA, Lamarche M, Gougeon R. 2005. Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr 82, 355-365.
Coles NW and Johnstone RM. 1962. Glutamine metabolism in Ehrlich ascites- carcinoma cells. Biochem J 83, 284-291.
Collins CL, Wasa M, Souba WW, Abcouwer SF. 1998. Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. J Cell Physiol 176, 166-178.
Dang CV. 2010. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 9, 3884-3886.
Daye D and Wellen KE. 2012. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23, 362-369.
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20.
DeBerardinis RJ and Chandel NS. 2016. Fundamentals of cancer metabolism. Sci Adv 27, e1600200.
de la Rosa V, Campos-Sandoval JA, Martı´n-Rufia´n M. 2009. A novel glutaminase isoform in mammalian tissues. Neurochem Int 55, 76–84.
Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. 2010. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 162, 193-212.
Donadio AC, Lobo C, Tosina M, de la Rosa V, Martín-Rufián M, Campos-Sandoval JA, Matés JM, Márquez J, Alonso FJ, Segura JA. 2008. Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103, 800-811.
Dronsfield A and Ellis P. 2011. Drug discovery: metformin and the control of diabetes. Education in Chemistry 11, 185-187.
Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF. 1999. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics 1, 51-62.
Fendt SM, Bell EL, Keibler MA, Davidson SM. 2013. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 73, 4429-4438.
Fischer JE and Chance WT. 1990. Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 14, 86S-89S.
Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, Faubert B, Viollet B, DeBerardinis RJ, Jones RG. 2015. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biol 13, e1002309.
Hanahan D and Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hursting SD, Lashinger LM, Colbert LH, Rogers CJ, Wheatley KW, Nunez NP, Mahabir S, Barrett JC, Forman MR, Perkins SN. 2007. Energy balance and carcinogenesis: underlying pathways and targets for intervention. Curr Cancer Drug Targets 7, 484-91.
Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI. 1998. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 338, 867-872.
Kim YH, Noh R, Cho SY, Park SJ, Jeon SM, Shin HD, Kim SB, Shin JE. 2015. Inhibitory effect of metformin therapy on the incidence of colorectal advanced adenomas in patients with diabetes. Intest Res 13, 145-152.
Kong F, Gao F, Liu H, Chen L, Zheng R, Yu J, Li X, Liu G, Jia Y. 2015. Metformin use improves the survival of diabetic combined small-cell lung cancer patients. Tumour Biol 36, 8101-8106.
Kovacevic Z and Morris HP. 1972. The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32, 326-333.
Kroemer G and Pouyssegur J. 2008. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482.
Krone CA and Ely JT. 2005. Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther 4, 25-31.
Kvamme E and Svenneby G. 1960. Effect of anaerobiosis and addition of keto acids on glutamine utilization by Ehrlich ascites-tumor cells. Biochim Biophys Acta 42, 187-188.
Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ. 2010. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322-326.
Lora J, Alonso FJ, Segura JA, Lobo C, Márquez J, Matés JM. 2004. Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 271, 4298-4306.
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Matés JM, Pascual JM, Maher EA, Malloy CR, Deberardinis RJ, Bachoo RM. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15, 827-837.
Márquez J, de la Oliva AR, Matés JM, Segura JA, Alonso FJ. 2006. Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 48, 465-471.
Márquez J, Núñez de Castro I. 1991. Mouse liver free amino acids during the development of Ehrlich ascites tumour. Cancer Lett 58, 221-224.
Márquez J, Matés JM, Alonso FJ, Martín-Rufián M, Lobo C, Campos-Sandoval JA. 2015. Canceromics studies unravel tumor’s glutamine addiction after metabolic reprogramming. In Tumor Cell Metabolism: Pathways, Regulation and Biology. Springer-Verlag Wien, Vienna, Austria, 2015.
Martín-Rufián M, Tosina M, Campos-Sandoval JA, Manzanares E, Lobo C, Segura JA, Alonso FJ, Matés JM, Márquez J. 2012. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One 7, e38380.
Masur K, Lang K, Niggemann B, Zanker KS, Entschladen F. 2001. High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol Biol Cell 12, 1973-1982.
Masur K, Vetter C, Hinz A, Tomas N, Henrich H, Niggemann B, Zänker KS. 2011. Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. Br J Cancer 104, 345-352.
Matsuno T and Satoh T. 1986. Glutamine metabolism in the avian host bearing transplantable hepatomatous growth induced by MC-29 virus. Int J Biochem 18, 187-189.
Matsuno T, Satoh T, Suzuki H. 1986. Prominent glutamine oxidation activity in mitochondria of avian transplantable hepatoma induced by MC-29 virus. J Cell Physiol 128, 397-401.
McGivan JD, Bradford NM. 2007. The transport of glutamine into mammalian cells. Front Biosci 12, 874-882.
McKeehan WL. 1982. Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6, 635-650.
Medina MA, Núñez de Castro I. 1990. Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 22, 681-683.
Mider GB. 1951. Some aspects of nitrogen and energy metabolism in cancerous subjects: a review. Cancer Res 11, 821-829.
Muti P, Berrino F, Krogh V, Villarini A, Barba M, Strano S, Blandino G. 2009. Metformin, diet and breast cancer: an avenue for chemoprevention. Cell Cycle 8, 2661.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. 2009. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9, 311-326.
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534.
Pavlova NN, Thompson CB. 2016. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23, 27-47.
Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ, Segura JA, Manzanares E, Ruiz-Sánchez P, González ME, Márquez J, Matés JM. 2005. Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem J 386, 535-542.
Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. 2013. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32, 1475-87.
Pine MJ, Kim U, Ip C. 1982. Free amino acid pools of rodent mammary tumors. J Natl Cancer Inst 69, 729-735.
Qu Z, Zhang Y, Liao M, Chen Y, Zhao J, Pan Y. 2012. In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma. Hepatol Res 42, 922-933.
Quesada AR, Medina MA, Márquez J, Sánchez-Jiménez FM, Núñez de Castro I. 1988. Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res 48, 1551-1553.
Rivera S, Azcón-Bieto J, López-Soriano FJ, Miralpeix M, Argilés JM. 1988. Amino acid metabolism in tumour-bearing mice. Biochem J 249, 443-449.
Sebolt JS and Weber G. 1984. Negative correlation of L-glutamine concentration with proliferation rate in rat hepatomas. Life Sci 34, 301-306.
Segura JA, Ruiz-Bellido MA, Arenas M, Lobo C, Márquez J, Alonso FJ. 2001. Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system. Int J Cancer 91, 379-384.
Shapot VS. 1979. On the multiform relationships between the tumor and the host. Adv Cancer Res 30, 89-150.
Slawson C, Copeland RJ, Hart GW. 2010. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35, 547-555.
Sookoian S and Pirola CJ. 2012. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol 18, 3775-3781.
Souba WW. 1993. Glutamine and cancer. Ann Surg 218, 715-728.
Souba WW, Strebel FR, Bull JM, Copeland EM, Teagtmeyer H, Cleary K. 1988. Interorgan glutamine metabolism in the tumor-bearing rat. J Surg Res 44, 720-726.
Stattin P, Björ O, Ferrari P, Lukanova A, Lenner P, Lindahl B, Hallmans G, Kaaks R. 2007. Prospective study of hyperglycemia and cancer risk. Diabetes Care 30, 561-7.
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. 1995. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333, 550-554.
Tennant DA, Durán RV, Boulahbel H, Gottlieb E. 2009. Metabolic transformation in cancer. Carcinogenesis 30, 1269-1280.
Turner A and McGivan JD. 2003. Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370, 403-408.
van den Heuvel AP, Jing J, Wooster RF, Bachman KE. 2012. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther 13, 1185-1194.
Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. 2009. Diabetes and cancer. Endocr Relat Cancer 16, 1103-23.
Vishvakarma NK, Kumar A, Singh V, Singh SM. 2013. Hyperglycemia of tumor microenvironment modulates stage-dependent tumor progression and multidrug resistance: implication of cell survival regulatory molecules and altered glucose transport. Mol Carcinog 52, 932-945.
Warburg O. 1956. On the origin of cancer cells. Science 123, 309-314.
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105, 18782-18787.
Wise DR and Thompson CB. 2010. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35, 427-33.
Yakar S, Nunez NP, Pennisi P, Brodt P, Sun H, Fallavollita L, Zhao H, Scavo L. 2006. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 147, 5826-5834.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top