跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅振瑜
研究生(外文):Chen-Yu Lo
論文名稱:冠狀病毒基因體poly(A) tail與nucleocapsid蛋白對於負股基因體形成之影響
論文名稱(外文):Effects of Nucleocapsid Protein and Poly (A) tail on Coronaviral Negative-Strand RNA Synthesis.
指導教授:吳弘毅吳弘毅引用關係
指導教授(外文):Hung-Yi Wu
口試委員:林昭男歐繕嘉
口試委員(外文):Chao-Nan LinShan-Chia Ou
口試日期:2017-05-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:冠狀病毒3’端poly(A) tailN protein
外文關鍵詞:CoronavirusPoly(A) tailNucleocapsid protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
冠狀病毒 (coronavirus;CoV)為單鏈正股RNA病毒,其基因體長度約30 kilobases(kb),冠狀病毒基因體結構具有5’端帽與3’端poly(A) tail。在病毒的複製過程中,以正股基因體為模板合成相對應的負股基因體是冠狀病毒複製的第一步。根據文獻指出,冠狀病毒基因體3’端poly(A) tail會影響病毒正股基因體合成效率,但是冠狀病毒3’端poly(A) tail是否會降低冠狀病毒負股基因體合成量目前仍未證實。為了探討冠狀病毒基因體3’端poly(A) tail是否會影響冠狀病毒負股基因體合成,我們首先構築具有不同poly(A) tail長度的defective interfering (DI) RNA,另外構築以poly(U)、poly(C)或poly(G) tail將DI RNA poly(A) tail進行取代突變的DI RNA,並且利用qRT-PCR分析病毒負股基因體合成量。結果發現: (i) poly(A) tail的長度增加,負股基因體合成效率也會隨之上升,但是DI RNA 3’端不具有poly(A) tail時,產生負股DI RNA的量會下降。(ii)利用poly(U)、poly(C)或poly(G) tail將DI RNA poly(A) tail進行取代突變後,突變的DI RNA仍能產生與未突變DI RNA相似的負股DI RNA合成量。(iii)負股的形成的起始位置會因為poly(A) tail的長短而有所不同。此結果顯示poly(A) tail長度會影響負股的合成效率以及負股形成的起始位置。此外,除了poly(A) tail之外,與病毒3’端poly(A) tail產生交互作用的蛋白質可能在病毒合成負股基因體當中扮演主要角色。由於冠狀病毒nucleocapsid protein (以下簡稱N protein)與poly(A) binding protein(PABP)具有與病毒基因體交互作用的能力,因此本次實驗選擇N protein與PABP以探討它在負股基因體形成上的角色。由電泳凝膠遷移率實驗electrophoretic mobility shift assay (EMSA),冠狀病毒N protein與poly(A) poly(U),poly(C),poly(G) tail的結合效率與負股基因體合成量成正相關,而PABP與poly(A) poly(U),poly(C),poly(G) tail的結合效率與負股基因體合成量彼此不一致。因此,病毒N protein與病毒基因體的結合也被推測是影響病毒負股基因體合成的重要因素之一。更進一步的實驗也發現冠狀病毒3’端poly(A) tail與N protein的結合效率也和病毒負股基因體合成效率有關。另外,目前已知位於病毒基因體5’端的序列,3’ UTR中最後55個核苷酸以及其所構成的S3與S4結構的完整性會影響病毒負股基因體的合成或複製,而我們也證明N protein與這些結構的結合能力與病毒複製效率成正相關。除了病毒基因體3’ 端的序列與N protein的結合被認為與負股形基因體成正相關外,最後,在本次實驗中也證實冠狀病毒5’端與3’端的序列會同時與N protein產生交互作用,而此交互作用可能在形成病毒複製複合體的重要因子。綜合本研究的結果可知,冠狀病毒N protein與病毒3’端 poly(A) tail會影響負股的形成。而N protein與5’端及3’端序列之交互作用在病毒的複製上也扮演重要的角色。
Coronavirus is an enveloped, positive-sense, single-stranded RNA virus, with the genome size of ~30 kilobases (kb). Coronavirus genome is 5’ capped and 3’ polyadenylated. The synthesis of negative-strand coronaviral genome is a necessary early step for genome replication. However, whether poly(A) tail is involved in the (-)-strand RNA synthesis remains unknown. For this, a series of bovine coronavirus (BCoV) defective interfering (DI) RNA mutants were constructed and tested using qRT-PCR. The major findings are as follows: (i) synthesis of (-)-strand RNA was enhanced with the increase of poly(A) tail length, (ii) the initiation site for synthesis of (-)-strand depends on the length of poly(A) tail and (iii) substitution of poly(A) tail with poly(U), (C) or (G) only had slightly effect on (-)-strand synthesis. These findings suggests that the poly(A) tail is able to affect both the efficiency and initiation site of (-)-strand synthesis and that, in addition to poly(A) tail, other factors may also be involved in the (-)-strand synthesis. Due to RNA-binding activity, BCoV nucleocapsid (N) protein and poly(A) binding protein(PABP) were selected to test its involvement in the (-)-strand synthesis. Using electrophoretic mobility shift assay, it was found that, instead of various binding affinity with poly(A) binding protein (PABP), poly(A), (U), (C) and (G) had similar binding affinity with N protein, suggesting N is more correlated to (-)-strand synthesis than PABP. Such binding was also found between N protein and 5’-terminal sequence, poly(A) tail, the 3’-terminal 55 nts and its resulting structures, which have been shown to be required for (-)-strand synthesis or replication, suggesting further the correlation of N protein with (-)-strand synthesis. Furthermore, we also demonstrated that N protein can simultaneously bind to 5’- and 3’-terminal sequence of coronavirus genome, suggesting N protein may serve a scaffold for the constitution of replication complex for the initiation of (-)-strand synthesis. In conclusion, these findings suggest that both poly(A) tail and N protein are involved in the (-)-strand RNA synthesis of coronaviruses and the circularization of coronaviral genome mediated by N protein may also play an important role in the initiation of (-)-strand RNA synthesis.
目次

摘要 i
Abstract ii
目次 iii
第一章 前言 1
第二章 文獻探討 2
第一節 冠狀病毒之基本簡介 2
1.1 冠狀病毒之分類 2
1.2冠狀病毒之基因體結構 2
第二節 cis-acting RNA elements介紹 2
2.1 cis-acting RNA elements的特性 3
2.2冠狀病毒5’UTR之cis-acting RNA elements 3
2.3冠狀病毒3’UTR之cis-acting RNA elements 4
第三節 冠狀病毒的轉譯、複製及轉錄 4
3.1 冠狀病毒的生活史 4
3.2 冠狀病毒複製相關蛋白質之轉譯 5
3.3 冠狀病毒RNA基因體的複製 5
3.4 冠狀病毒次級基因體RNA的轉錄 6
第四節 Poly(A) tail在基因表達所扮演的角色 6
4.1 poly(A) tail在真核細胞messenger RNA的形成機轉與重要性 6
4.2 病毒3’端poly(A) tail與病毒基因表達的相關性 7
第五節 以冠狀病毒的Defect interfering RNA研究cis-acting RNA elements對於病毒複製之影響 7
5.1 冠狀病毒天然缺陷株RNA (DI RNA) 7
5.2 以Defect interfering RNA作為研究材料的原因 8
5.3 以牛冠狀病毒DI RNA為系統來研究負股RNA合成 8
第三章 材料與方法 10
第一節 野外株與突變株DIRNA 質體之構築 10
1.1 牛冠狀病毒天然缺陷株DI RNA 質體之構築 10
1.2 以pBM25A 構築DI RNA突變株質體 10
第二節 選殖及增殖具突變序列之DNA片段 11
2.1 利用XL-TOPO® Vector (invitrogenTM)系統將突變之 PCR DNA 片段進行選殖 11
2.2 利用 PCR 篩選含有突變序列的菌落 12
2.3 萃取質體DNA 12
2.4 利用限制酵素切割突變 DNA 片段 12
2.5 DNA片段純化 13
2.6 將突變 DNA 片段接入 pGEM®-3Zf(-)載體 13
2.7 利用 100%酒精沉澱 DNA 連接反應之產物 13
2.8 突變 DNA 片段之轉型作用及選殖 14
2.9 利用 PCR 篩選含有突變序列的菌落 14
2.10 萃取質體DNA 14
2.11 DNA濃度測定 14
第三節 體外轉錄反應以及定量 15
3.1利用單一限制酵素 Mlu I 使環形質體形成線狀質體 15
3.2 體外轉錄反應(In vitro transcription) 15
3.3 純化RNA 15
3.4 RNA濃度測定 16
第四節 野外株與突變株BCoV DI RNA之轉染 16
4.1 細胞及病毒 16
4.2 牛冠狀病毒DI RNA之轉染 16
第五節 利用即時定量聚合酶連鎖反應偵測BCoV負股DI RNA之合成 17
5.1 自HRT-18細胞萃取RNA 17
5.2 去除 RNA 5’端磷酸根的結構 17
5.3 利用 T4 RNA LigaseⅠ將 RNA 3’端與5’端頭尾相連 18
5.4 互補DNA (cDNA) 合成 18
5.5 即時定量聚合酶連鎖反應 18
5.6反轉錄聚合酵素連鎖反應 19
5.7反轉錄聚合酶鏈鎖反應產物確認 19
第六節 BCoV 負股DIRNA序列分析 19
6.1 將反轉錄聚合酵素連鎖反應的產物進行序列分析 19
第七節 以electrophoretic mobility shift assay (EMSA)來探討蛋白質與病毒poly(A) tail之結合效率 19
7.1合成具啟動子(promoter)及突變poly(A) tail之短片段DNA 20
7.2利用體外轉錄反應(In vitro transcription)以合成具放射性RNA探針 20
7.3 純化具放射性RNA探針 20
7.4 將RNA探針分別與nucleocapsid protein或poly(A) 結合蛋白進行結合效率分析 21
7.5 以軟體分析EMSA結果 21
第八節 以EMSA探討N protein與病毒3’ 端末端序列之間結合效率 21
8.1合成具啟動子(promoter)及突變3’ 端末端序列之短片段DNA 21
8.2利用體外轉錄反應(In vitro transcription)以合成具放射性RNA探針 22
8.3 純化具放射性RNA探針 22
8.4 將RNA探針分別與N protein進行結合效率分析 23
8.5 以軟體分析EMSA結果 23
第九節 以EMSA探討N protein與病毒5’ 端末端之間結合效率 24
9.1合成具啟動子(promoter)及突變3’ 端末端序列之短片段DNA 24
9.2利用體外轉錄反應(In vitro transcription)以合成具放射性RNA探針 24
9.3 純化具放射性RNA探針 24
9.4 將RNA探針分別與N protein進行結合效率分析 25
9.5 以軟體分析EMSA結果 25
第十節 統計分析 25
第四章 實驗結果 27
第一節 利用qRT-PCR 探討poly(A) tail對負股DI RNA的形成之重要性 27
第二節 利用序列之分析確認負股基因體合成起始位置 28
第三節 利用EMSA 比較N protein或PABP蛋白與冠狀病毒poly(A) tail結合效率是否與其負股基因體合成有關 28
第四節 利用EMSA 確認N protein與病毒基因體3’端最後55個核苷酸的結合效率,以評估N protein在負股形成的重要性 31
第五節 利用EMSA 確認N protein與病毒基因體3’端S3與S4結構的結合效率,以評估N protein在複製的重要性 31
第六節 利用EMSA 確認N protein能否與病毒基因體5’ 端序列的結合效率,以評估N protein在負股形成的重要性 32
第七節 利用EMSA 探討N protein能否同時與病毒基因體5’ 端以及3’端序列結合,進而將病毒基因體環型化 32
第五章 討論 34
參考文獻 66
















表次
Table 1. Oligonucleotides used in this study. 39




































圖次
Figure 1. The RNA structures in the 5’ and 3’ terminus of BCoV genome. 41
Figure 2. Analysis of the effect of poly(A) tail on the efficiency of (-)-strand DI RNA synthesis. 43
Figure 3. The relative efficiency of (-)-strand DI RNA synthesis between DI RNA with poly(A), poly(U), (C), or (G) tail 47
Figure 4. Identification of the initiation site of (-)-strand DI RNA synthesis 46
Figure 5. Binding affinity between N protein and RNA with 3’- terminal 95 nts and poly(A), (U), (C) or (G) tail is evaluated by electrophoretic mobility shift assay (EMSA) 49
Figure 6. Binding affinity between PABP and RNA with 3’- terminal 95 nts and poly(A), (U), (C) or (G) tail is evaluated by electrophoretic mobility shift assay (EMSA) 51
Figure 7. Binding affinity between N protein and RNA with β-actin sequence or Topo sequence is evaluated by electrophoretic mobility shift assay (EMSA) 53
Figure 8. Binding affinity between N protein and RNA with 3’- terminal 95 nts or 3’- terminal 95 nts with poly(A) tail is evaluated by electrophoretic mobility shift assay (EMSA) 55
Figure 9. Binding affinity between N protein and RNA with or without 3’- terminal 55 nts is evaluated by electrophoretic mobility shift assay (EMSA) 57
Figure 10. Binding affinity between N protein and RNA with S3 or S4 structures is evaluated by electrophoretic mobility shift assay (EMSA) 59
Figure 11. Binding affinity between N protein and RNA with 5’ terminal sequence is evaluated by electrophoretic mobility shift assay (EMSA) 61
Figure 12. Simultaneous binding of N protein with 5’ and 3’ terminal sequence of coronavirus genome 63
Figure 13. Model underlying the synthesis of negative-strand RNA. 65
Almazan F, Galan C, and Enjuanes L. 2004. The nucleoprotein is required for efficient coronavirus genome replication. Journal of Virology 78(22):12683-12688.
Banerjee S, and Makino S. 1998. Studies of murine coronavirus DI RNA replication from negative-strand transcripts. Advances in Experimental Medicine and Biology 440:241-246.
Banerjee S, Repass JF, and Makino S. 2001. Enhanced accumulation of coronavirus defective interfering RNA from expressed negative-strand transcripts by coexpressed positive-strand RNA transcripts. Virology 287(2):286-300.
Brawerman G. 1987. Determinants of messenger RNA stability. Cell 48(1):5-6.
Brian DA, and Baric RS. 2005. Coronavirus genome structure and replication. Current Topics in Microbiology and Immunology 287:1-30.
Brown CG, Nixon KS, Senanayake SD, and Brian DA. 2007. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. Journal of Virology 81(14):7716-7724.
Chang RY, Hofmann MA, Sethna PB, and Brian DA. 1994. A cis-acting function for the coronavirus leader in defective interfering RNA replication. Journal of Virology 68(12):8223-8231.
Chen SC, and Olsthoorn RC. 2010. Group-specific structural features of the 5'-proximal sequences of coronavirus genomic RNAs. Virology 401(1):29-41.
Cheng JH, Peng CW, Hsu YH, and Tsai CH. 2002. The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail. Journal of Virology 76(12):6114-6120.
Cologna R, and Hogue BG. 2000. Identification of a bovine coronavirus packaging signal. Journal of Virology 74(1):580-583.
Darnell JE, Jr. 1982. Variety in the level of gene control in eukaryotic cells. Nature 297(5865):365-371.
Gamarnik AV, and Andino R. 2000. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. Journal of Virology 74(5):2219-2226.
Goebel SJ, Miller TB, Bennett CJ, Bernard KA, and Masters PS. 2007. A hypervariable region within the 3 ' cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. Journal of Virology 81(3):1274-1287.
Goebel SJ, Taylor J, and Masters PS. 2004. The 3' cis-acting genomic replication element of the severe acute respiratory syndrome coronavirus can function in the murine coronavirus genome. Journal of Virology 78(14):7846-7851.
Herold J, and Andino R. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Molecular cell 7(3):581-591.
Hofmann MA, Sethna PB, and Brian DA. 1990. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. Journal of Virology 64(9):4108-4114.
Hsue B, and Masters PS. 1997. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. Journal of Virology 71(10):7567-7578.
Huang AS. 1973. Defective interfering viruses. Annual Review of Microbiology 27:101-117.
Hurst KR, Ye R, Goebel SJ, Jayaraman P, and Masters PS. 2010. An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. Journal of Virology 84(19):10276-10288.
Ke TY, Liao WY, and Wu HY. 2013. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS One 8(12):e82176.
Lai MM. 1992. RNA recombination in animal and plant viruses. Microbiology Review 56(1):61-79.
Lai MM, and Cavanagh D. 1997. The molecular biology of coronaviruses. Advances in virus research 48:1-100.
Lai MM, Patton CD, and Stohlman SA. 1982. Further characterization of mRNA's of mouse hepatitis virus: presence of common 5'-end nucleotides. Journal of Virology 41(2):557-565.
Li L, Kang H, Liu P, Makkinje N, Williamson ST, Leibowitz JL, and Giedroc DP. 2008. Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. Journal of molecular biology 377(3):790-803.
Liao WY, Ke TY, and Wu HY. 2014. The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis. PLoS One 9(5):e98422.
Liu P, Li L, Keane SC, Yang D, Leibowitz JL, and Giedroc DP. 2009. Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions. Journal of Virology 83(23):12084-12093.
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, and Giedroc DP. 2007. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA 13(5):763-780.
Liu P, Yang D, Carter K, Masud F, and Leibowitz JL. 2013. Functional analysis of the stem loop S3 and S4 structures in the coronavirus 3'UTR. Virology 443(1):40-47.
Masters PS. 2006. The molecular biology of coronaviruses. Advances in virus research 66:193-292.
McBride R, van Zyl M, and Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses 6(8):2991-3018.
Peng YH, Lin CH, Lin CN, Lo CY, Tsai TL, and Wu HY. 2016. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation. PLoS One 11(10):e0165077.
Raman S, Bouma P, Williams GD, and Brian DA. 2003. Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of Virology 77(12):6720-6730.
Raman S, and Brian DA. 2005. Stem-loop IV in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of Virology 79(19):12434-12446.
Repass JF, and Makino S. 1998. Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis. Journal of Virology 72(10):7926-7933.
Sethna PB, and Brian DA. 1997. Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes. Journal of Virology 71(10):7744-7749.
Sheets MD, Wu M, and Wickens M. 1995. Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 374(6522):511-516.
Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, and Flanegan JB. 2006. Relationship between poliovirus negative-strand RNA synthesis and the length of the 3' poly(A) tail. Virology 345(2):509-519.
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, and Gorbalenya AE. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of molecular biology 331(5):991-1004.
Spagnolo JF, and Hogue BG. 2000. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. Journal of Virology 74(11):5053-5065.
Steil BP, Kempf BJ, and Barton DJ. 2010. Poly(A) at the 3' end of positive-strand RNA and VPg-linked poly(U) at the 5' end of negative-strand RNA are reciprocal templates during replication of poliovirus RNA. Journal of Virology 84(6):2843-2858.
Tarun SZ, Jr., and Sachs AB. 1995. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes & Development 9(23):2997-3007.
Van Ooij MJ, Polacek C, Glaudemans DH, Kuijpers J, van Kuppeveld FJ, Andino R, Agol VI, and Melchers WJ. 2006. Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Research 34(10):2953-2965.
Wang X, Bai J, Zhang L, Wang X, Li Y, and Jiang P. 2012. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication. Antiviral Research 96(3):315-323.
Williams GD, Chang RY, and Brian DA. 1999. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. Journal of Virology 73(10):8349-8355.
Wu HY, and Brian DA. 2010. Subgenomic messenger RNA amplification in coronaviruses. Proceedings of National Academy Sciences of the United States of America 107(27):12257-12262.
Wu HY, Ke TY, Liao WY, and Chang NY. 2013. Regulation of coronaviral poly(A) tail length during infection. PLoS One 8(7):e70548.
Yang D, and Leibowitz JL. 2015. The structure and functions of coronavirus genomic 3' and 5' ends. Virus Research 206:120-133.
Yang D, Liu P, Wudeck EV, Giedroc DP, and Leibowitz JL. 2015. SHAPE analysis of the RNA secondary structure of the Mouse Hepatitis Virus 5' untranslated region and N-terminal nsp1 coding sequences. Virology 475:15-27.
Zarkower D, Stephenson P, Sheets M, and Wickens M. 1986. The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro. Molecular Cell Biology 6(7):2317-2323.
Zhou M, and Collisson EW. 2000. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3' genomic RNA. Virus Research 67(1):31-39.
Zhou M, Williams AK, Chung SI, Wang L, and Collisson EW. 1996. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3' terminus of the genome. Virology 217(1):191-199.
Zust R, Miller TB, Goebel SJ, Thiel V, and Masters PS. 2008. Genetic interactions between an essential 3' cis-acting RNA pseudoknot, replicase gene products, and the extreme 3' end of the mouse coronavirus genome. Journal of Virology 82(3):1214-1228.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊