|
[1]S. K. Yong, P. Xia, and A. Valdes-Garcia, 60 GHz Technology for Gbps WLAN and WPAN. Chichester, U.K.: Wiley, 2011. [2]K. L. Shree, L. Penubaku, G. Nandihal,“ A novel approach of using security enabled Zigbee in vehicular communication,” 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC)., 2016. [3]Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-Wave Based Alternative Physical Layer Extension, IEEE Std. 802.15.3c, 2009. [4]IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Std 802.11ad-2012, 2012. [5]M. C. Parker, G. Koczian, T. Quinlan, S. D. Walker.,“High capacity communications at 24 GHz and 60 GHz for converged 5G networking” 2015 20th European Conference on Networks and Optical Communications - (NOC)., pp. 1-6, 2015. [6]K. Ohata et al., “1.25 Gbps wireless gigabit ethernet link at 60 GHz band,”in Proc IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, USA, 2003, vol. 1, pp. 373–376. [7]S. Kato et al., “Single carrier transmission for multi-gigabit 60-GHz WPAN system,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1466–1478, Oct. 2009. [8]X. Zhang, L. R. Lu, R. Funada, C. S. Sum, and H. Harada, “Physical layer design and performance analysis on multi-Gbps millimeter-wave WLAN system,” in Proc IEEE ICCS, Singapore, Nov. 2010, pp. 92–96. [9]C. R. Anderson and T. S. Rappaport, “In-building wideband partition loss measurements at 2.5 and 60 GHz,” IEEE Trans.Wireless Commun., vol. 3, no. 3, pp. 922–928, May 2004. [10]M. Lei, C. S. Choi, R. Funada, H. Harada, and S. Kato, “Throughput comparison of multi-Gbps WPAN (IEEE 802.15.3c) PHY layer designs under non-linear 60-GHz power amplifier,” in Proc IEEE Int. Symp. PIMRC, Athens, Greece, Sep. 2007, pp. 1–5. [11]E. Perahia et al., IEEE P802.11Wireless LANs TGad Evaluation Methodology, 2010. [12]W. Gerhard and R. Knoechel, “Improvement of power amplifier efficiency by reactive Chireix combining, power back-off and differential phase adjustment,”in Proc IEEE MTT-IMS, San Francisco, CA, USA, Jun. 2006, pp. 1887–1890. [13]N. Safari, J. P. Tanem, and T. Roste, “A block-based predistortion for high power-amplifier linearization,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2813–2820, Jun. 2006. [14]A. Zhu et al., “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series,” IEEE Trans.Microw. Theory Techn., vol. 56, no. 7, pp. 1524–1534, Jul. 2008. [15]M. Rawat, K. Rawat, and F. M. Ghannouchi, “Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 95–104, Jan. 2010. [16]G. Montoro, P. L. Gilabert, E. Bertran, A. Cesari, and J. A. Garcła, “An LMS-based adaptive predistorter for cancelling nonlinear memory effects in RF power amplifiers,” in Proc. APMC, Bangkok, Thailand, Dec. 2007, pp. 1–4. [17]L. Ding et al., “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159–165, Jan. 2004. [18]A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice. New York, NY, USA: Springer-Verlag, 2001. [19]A. Doucet, “On sequential simulation-based methods for bayesian filtering,”Stat. Comput., vol. 10, no. 3, pp. 197–208, Jul. 2000. [20]P. M. Djuric et al., “Particle filtering,” IEEE Signal Process. Mag., vol. 20,no. 5, pp. 19–38, Sep. 2003. [21]J. Miguez and P. M. Djuric, “Blind equalization of frequency-selective channels by sequential importance sampling,” IEEE Trans. Signal Process., vol. 52, no. 10, pp. 2738–2748, Oct. 2004. [22]D. Crisan, “Particle filters: A theoretical perspective,” in SequentialMonte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York, NY, USA: Springer-Verlag, 2001, pp. 17–38. [23]J. Liu and R. Chen, “Blind deconvolution via sequential imputations,”J. Amer. Stat. Assoc., vol. 90, no. 430, pp. 567–576, Jun. 1995. [24]Z. G. Yang and X. D. Wang, “A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 271–280, Feb. 2002. [25]T. Bertozzi, D. Le Ruyet, G. Rigal, and H. Vu-Thien, “Joint data-channel estimation using the particle filtering on multipath fading,” in Proc. ICT, Papeete, Tahiti, 2003, pp. 1284–1289. [26]Y. Huang and P. M. Djuric, “A new importance function for particle filtering and its application to blind detection in flat fading channels,” in Proc. IEEE ICASSP, 2002, pp. 1617–1620. [27]J. H. Kotecha and P. M. Djuric, “Sequential Monte Carlo sampling detector for Rayleigh fast-fading channels,” in Proc. IEEE ICASSP, 2000, pp. 61–64. [28]Kyeongyeon Kim, Kalantarova, N., Kozat, S.S., Singer, A.C., “Linear MMSE-Optimal Turbo Equalization Using Context Trees”, IEEE Transactions On Signal Processing, Vol. 61, No. 12, pp. 3041-3055, Jun. 15, 2013 [29]J. C. Pedro, N. B. Carvalho, and P. M. Lavrador, “Modeling nonlinear behavior of band-pass memoryless and dynamic systems,” in Proc. IEEE MTTS Int. Microw. ymp. Dig. MTT-IMS, Philadelphia, PA, USA,Jun. 2003, pp. 2133–2136. [30]S. K. Yong, “TG3c channel modeling sub-committee final report,” IEEE 802.15 TG3c Working Group for Wireless Personal Area Network (WPAN), IEEE 802.15-07-0584-01-003c, May 2007. [31]K. Sato, H. Sawada, Y. Shoji, and S. Kato, “Channel model for millimeter-wave WPAN,” in Proc. IEEE 18th Int. Symp. PIMRC, Athens, Greece, Sep. 2007, pp. 1–5. [32]B. Li, Z. Zhou, W. X. Zou, X. B. Sun, and G. L. Du, “On the efficient beam pattern training for 60 GHz wireless personal area networks,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 504–515, Feb. 2013. [33]Z. Y. Xiao, X. G. Xia, D. P. Jin, and N. Ge, “Iterative eigenvalue ecomposition and multipath-grouping Tx/Rx joint beam-formings for millimeter-wave communications,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1595–1607, Mar. 2015. [34]P. Shanmugam, H. G. Yeh, J. Lee, D. Chang,“ Transmitter beam-forming techniques for indoor millimeter wave communication,” 2017 Annual IEEE International Systems Conference (SysCon)., 2017. [35]Z. Zhao, W. Na, V. M. Reddy, G. Reddy, Q. Zhang,“ Multi-band behavioral modeling of power amplifier using carrier frequency-dependent time delay neural network model,” 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO).,2017. [36]D. Gapillout, C. Maziere, E. Ngoya, S. Mons,“ A reliable methodology for experimental extraction of power amplifier dynamic volterra model,”in 2015 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC).2015. [37]A. Zhu,“ Behavioral modeling for digital predistortion of RF power amplifiers: from Volterra series to CPWL functions,” 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR),2016. [38]S. J. Julier and K. U. Jeffery, “A new extension of the Kalman filter to nonlinear systems,” in Proc. SPIE 11th Int. Symp. Aerosp. Defense Sens., Simul. Controls, Multi Sensor Fusion, Tracking Resource Manage. II, 1997, p. 182.
|