跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳偉誠
研究生(外文):Wei-Chen Wu
論文名稱:退火作用影響下銀薄膜微結構及組織結構改變機制之探討
論文名稱(外文):Effects of annealing on the microstructures and texture transformations of Ag thin films
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
口試委員:劉柏良黃德劭
口試委員(外文):Po-Liang LiuDe-Shao Huang
口試日期:2017-01-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:42
中文關鍵詞:組織結構轉換界面能應變能缺陷能
外文關鍵詞:texture transforminterface energystrain energydefect energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用屬FCC金屬材料的銀薄膜來探討,分別使用濺鍍機(Sputter)及電子束蒸鍍機(E–gun)兩種沉積方法,沉積厚度為0.5μm及1.5μm的銀薄膜試片,透過將兩種沉積方式的試片放置在260°C的烘烤箱中進行退火作用,並觀察組織結構轉換的差異,藉此探討薄膜膜質純度對於組織結構轉換的影響,以及不同沉積方法是否影響薄膜組織轉換臨界厚度,由實驗中觀察到當薄膜厚度達到臨界厚度時,經退火作用後其組織結構會從(111)轉換到(100),另外利用觀察不同厚度銀薄膜退火前後組織結構轉換及表面微結構的變化,藉以了解厚度對於薄膜組織結構轉換強度及表面微結構變化的影響,本研究量測部分主要是利用高解析X-ray繞射儀(XRD)觀察銀薄膜的優選晶向及(111)、(100)組織結構的強度比例,最後以FIB觀察退火前後之薄膜表面微結構變化。
This thesis study the texture transformation of FCC silver thin films. Silver thin films with thicknesses of 0.5 and 1.5 μm were deposited using sputter and E-gun respectively. Two samples were annealed at 260°C and the texture transformations were observed to exam the films properties and critical thickness. When the thickness of film is thicker than the critical thickness the film texture transform from (111) to (100) after annealing. Changes of texture transformations and microstructures of thin films with different thickness before and after annealing were observed to understand the effect of thickness on the transformation intensity and surface microstructure. In this experiment, the preferred orientation of thin films and the ratio of the (111) and (100) texture of thin films were observed by using XRD. At last, microstructure changes of thin films before and after annealing were observed by using FIB.
目錄
摘要 i
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 組織結構探討 2
1.3 研究動機及目的 3
1.4 論文架構 4
第二章 文獻探討 5
2.1 薄膜組織結構的形成 5
2.2 退火誘導銀薄膜組織結構轉換 6
2.3 薄膜濺鍍原理 8
2.3.1 直流濺鍍法(DC Sputter) 9
2.3.2 電子束蒸鍍法(Electron Beam Evaporation) 10
2.4 組織結構轉換研究 11
2.4.1 銀薄膜與基板間界面能探討 11
2.4.2 黏結層對銀薄膜組織結構探討 12
2.4.3 退火機制對銀薄膜微結構探討 13
第三章 試件製程與實驗方法 15
3.1 前言 15
3.2 試件製程 15
3.3 實驗方法 17
3.3.1 試片退火 17
3.3.2 X-ray量測 18
3.3.3 聚焦式離子束顯微鏡觀察 21
第四章 實驗結果與討論 23
4.1 沉積方法對組織結構之影響 23
4.2 沉積厚度對組織結構之影響 28
4.3 退火機制與組織結構轉換強度之關係 30
4.4 退火機制對微結構組織之影響 32
第五章 結論與未來展望 37
5.1 結論 37
5.2 未來展望 38
參考文獻 39
表目錄
表3.1 濺鍍機沉積銀薄膜之參數 16
表3.2 蒸鍍機沉積銀薄膜之參數 17
表4.1 0.5μm銀薄膜(111)晶向繞射強度比例轉換差異比較表 26
表4.2 1.5μm銀薄膜(111)晶向繞射強度比例轉換差異比較表 28
圖目錄
圖1.1 米勒指數 2
圖1.2 非均向性材料[9] 3
圖1.3 (a){111}原子結構圖(b){100}原子結構圖(c){110}原子結構圖 3
圖2.1 薄膜組織結構圖[22] 6
圖2.2 ZⅠ~ZⅢ結構截面圖[23] 6
圖2.3 FCC材料之薄膜厚度與溫度關係圖[11] 8
圖2.4 薄膜濺鍍示意圖 10
圖2.5 薄膜成長過程示意圖[21] 10
圖2.6 各種薄膜厚度之組織結構強度[16] 11
圖2.7 薄膜厚度0.6μm及2.4μm之EBSD[16] 12
圖2.8 薄膜有無黏結層Ti之強度分佈比較圖[13] 13
圖2.9 雙晶結構薄膜之差排密度與雙晶間距圖[7] 14
圖2.10 雙晶結構薄膜之厚度與體積分數比較圖[14] 14
圖3.1 試件製程照片(a)試片尺寸(b)清洗試片(c)乾燥試片(d)濺鍍試片 16
圖3.2 試片製程圖 17
圖3.3 熱風烘箱圖 18
圖3.4 高解析X-ray繞射儀 19
圖3.5 X-ray量測示意圖[30] 19
圖3.6 布拉格方程式之幾何圖[31] 20
圖3.7 銀之標準卡 20
圖3.8 複晶低掠角X-ray繞射示意圖[31] 21
圖3.9 多功能聚焦離子束顯微鏡 22
圖3.10 多功能聚焦離子束系統示意圖[32] 22
圖4.1 薄膜厚度與(111)組織結構強度關係圖[13] 23
圖4.2 0.5μm銀薄膜退火前之XRD圖 25
圖4.3 0.5μm銀薄膜退火後之XRD圖 25
圖4.4不同沉積方式之0.5μm薄膜退火前後(111)組織結構強度圖 26
圖4.5 1.5μm銀薄膜退火前之XRD圖 27
圖4.6 1.5μm銀薄膜退火後之XRD圖 27
圖4.7不同沉積方式之1.5μm薄膜退火前後(111)組織結構強度圖 28
圖4.8 Sputter沉積之0.5μm及1.5μm薄膜退火前後(111)組織結構強度圖 29
圖4.9 E-gun沉積之0.5μm及1.5μm薄膜退火前後(111)組織結構強度圖 30
圖4.10 0.5μm薄膜之退火時間與(100)組織結構強度關係圖 31
圖4.11 1.5μm薄膜之退火時間與(100)組織結構強度關係圖 31
圖4.12 0.5μm薄膜退火前後(111)組織雙晶結構強度圖 32
圖4.13 1.5μm薄膜退火前後(111)組織雙晶結構強度圖 33
圖4.14 不同沉積方式之退火前後(111)組織晶粒尺寸變化圖 34
圖4.15 不同沉積方式之退火前後(100)組織晶粒尺寸變化圖 34
圖4.16 Sputter(0.5μm)薄膜FIB圖(a)退火前(b)退火後 35
圖4.17 Sputter(1.5μm)薄膜FIB圖(a)退火前(b)退火後 35
圖4.18 E-gun(0.5μm)薄膜FIB圖(a)退火前(b)退火後 36
圖4.19 E-gun(1.5μm)薄膜FIB圖(a)退火前(b)退火後 36
[1]Nix, W.D., “Mechanical Properties of Thin Films,” Metallurgical Transactions A, 20A: pp. 2217-2245, 1989.
[2]Spearing, S.M., “Materials issues in microelectromechanical systems (MEMS) ,” Acta Materialia, 48(1): pp. 179-196, 2000.
[3]Tu, K.N., “Recent advances on electromigration in very-large-scale-integration of interconnects,” Journal of Applied Physics, 94(9): pp. 5451-5473, 2003.
[4] J.S. Kilby, U.S. Patent 3,138,743, 1959.
[5] 游振祿, “鍍鈀/金銅打線與合金型銅鈀打線在可靠度測試下之界面反應”國立成功大學材料科學及工程學系碩士學位論文,2013。
[6]Yeon Sik Jung, “Study on texture evolution and properties of silver thin films prepared by sputtering deposition,” Applied Surface Science 221, pp. 281–287, 2004.
[7]H. ZHANG, J. GENG, R. OTT, M. BESSER, and M. KRAMER,”Effect of Temperature on the Nano/Microstructure and Mechanical Behavior of Nanotwinned Ag Films,” The Minerals, Metals & Materials Society and ASM International 2015.
[8]H. Ceric,and S. Selberherr ,” Electromigration in submicron interconnect features of integrated circuits,” Materials Science and Engineering, Vol. 71, pp. 53-86, 2014.
[9]鄭雅琪, “受外加應力及介面影響下銀薄膜組織結構相改變機制”國立中興大學精密工程學系博士學位論文,2014。
[10]Chopra, K.L., P.D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Progress in Photovoltaics, 12(2-3): pp. 69-92, 2004.
[11]Thompson, C.V. and R. Carel, “Stress and grain growth in thin filims,” Journal of the Mechanics and Physics of Solids, 44(5): pp. 657-673, 1996.
[12]Thompson, C.V. and R. Carel, “Grain growth and texture evolution in thin films,” Materials Science Forum, 204-206: pp. 83-98, 1996.
[13]Shefford P. Baker, Brandon Hoffman, Lindsay Timian, Adam Silvernail,and Elizabeth A. Ellis, “Texture transformations in Ag thin films,” Acta Materialia ,61 ,pp. 7121–7132,2013.
[14]D. Bufford, H. Wang, and X. Zhang,” Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films,” Journal of Materials Research Society, Vol. 28, No. 13,pp. 1729-1739, 2013.
[15]Vodnick, A.M., D.E. Nowak, S. Labat, O. Thomas, and S.P. Baker, “Out-of-plane stresses arising from grain interactions in textured thin films,” Acta Materialia, 58(7): pp. 2452-2463, 2010.
[16] J. Greiser, P. Müllner, and E. Arzt, “Abnormal growth of "giant" grains in silver thin films,” Acta Materialia, 49: pp. 1041-1050, 2001.
[17]Vinci, R.P., E.M. Zielinski, and J.C. Bravman, “Thermal strain and stress in Cu thin films, ” Thin Solid Films, 262: pp. 142-153, 1995.
[18]Baker, S.P., A. Kretschmann, and E. Arzt, “Thermomechanical Behavior of Different Texture Components in Cu Thin Films,” Acta Materialia, 49: pp. 2145-2160, 2001.
[19]Hommel, M. and O. Kraft, “Deformation behavior of thin copper films on deformable substrates,” Acta Materialia, 49(19): pp. 3935-3947, 2001.
[20]Sonnweber-Ribic, P., P. Gruber, G. Dehm, and E. Arzt, “Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction,” (vol 54, pp. 3863, 2006). Acta Materialia, 55(2): pp. 765-766, 2007.
[21]I. Petrov ,P. B. Barna ,and J. E. Greene,” Microstructural evolution during film growth,” Journal of Vacuum Science and Technology A , vol. 21, pp. 117–128 ,2003.
[22]Zhong Lin Wang, Yi Liu and Ze Zhang,“Handbook of Nanophase and Nanostructured Materials,”.
[23]H.J. Frost, “Microstructural evolution during film growth Materials Characterization, “vol. 32, Issue 4,pp. 257-273, 1994.
[24] J. W. Patten, E. D. McClanahan and J. W. Johnston, “Room-Temperature Recrystallization in Thick Bias-Sputtered Copper Deposits,” J. Appl. Phys. 42, pp. 4371, 1971.
[25]N. Marechal, E. Quesnel, and Y. Pauleau,” Silver thin films deposited by magnetron sputtering,” Thin Solid Films, 241,pp. 34-38, 1994.
[26]E. M. Zielinski, R. P. Vinci and J. C. Bravman, “Effects of barrier layer and annealing on abnormal grain growth in copper thin films,” J. Appl. Phys.vol. 76,pp. 4516, 1994.
[27]J. Greiser, D. Müller, P. Müllner, C.V. Thompson, and E. Arzta, “Growth of giant grains in silver thin films,” Scripta Materialia ,vol. 41, Issue 7, pp. 709–714, 1999.
[28]Petra Sonnweber-Ribic, Patric Gruber, Gerhard Dehm, and Eduard Arzt,“Texture transition in Cu thin films: Electron backscatter diffraction vs.X-ray diffraction,” Acta Materialia, vol.54 ,pp. 3863–3870, 2006.
[29]D. Bufford, H. Wang, X. Zhang, “High-strength, epitaxial nanotwinned Ag films,”Acta Mater. vol.59 ,pp. 93-101, 2011.
[30]蔡錫鐃,董雅清,“以薄膜沉積厚度探討晶相結構及內應力”精密檢測及奈米技術研討會,92-100頁,95年12月。
[31]林麗娟,“X光繞射原理及其應用”X光材料分析技術與應用專題,工業材料86期,100-109頁,83年2月。
[32]A. Rigort, E. Villa, F. J.B. Bäuerlein, F. J.B. Bäuerlein, B. D. Engel, and J. M. Plitzko,“Integrative Approaches for Cellular Cryo-electron Tomography: Correlative Imaging and Focused Ion Beam Micromachining,” METHODS IN CELL BIOLOGY, vol.111 , CHAPTER 14.
[33]Shefford P. Baker, Krishanu Saha, and Jonathan B. Shu, “Effect of thickness and Ti interlayers on stresses and texture transformations in thin Ag films during thermal cycling,” APPLIED PHYSICS LETTERS ,103 ,pp. 191905,2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top