跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡良德
研究生(外文):Liang-Te Tsai
論文名稱:車用高功率LED頭燈散熱機構設計之模擬分析
論文名稱(外文):Heat Dissipation Mechanism Analysis of a High-Power LED Headlamp for the Automobile
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
口試委員:徐烱勛黃德劭
口試委員(外文):Jiong-Shiun HsuDe-Shau Huang
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:高功率LED頭燈熱管散熱鰭片接面溫度ANSYS Fluent
外文關鍵詞:High Power LED headlampheat pipeheat sinkANSYS Fluent
相關次數:
  • 被引用被引用:2
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
隨著LED封裝製程能力進步與成本逐漸降低,並擁有高效率、壽命長,輕薄短小、造型設計容易等諸多優勢,近幾年被廣泛的應用在汽車照明光源的使用,並開始往替代舊式鹵素燈與氙氣頭燈來設計發展,成為未來市場上各家製造商積極研究之目標。但由於LED本身的發光效率及壽命,將會隨著晶片溫度的升高而遞減,以及LED的封裝結構並不耐熱,當LED晶片的接面溫度過高時,將會對晶片本身與封裝的材料帶來永久性的傷害。因此如何設計出有效的散熱方式,以提升LED 發光效率及壽命,將是高功率LED 上應用的重要關鍵。
本研究利用計算流體分析軟體,針對市售高功率LED頭燈之原始模型進行分析與散熱設計。透過加入溝槽式熱管與散熱鰭片的設計,以及改變LED封裝基板與電路板材質參數,觀察LED晶片接面溫度的變化,探討設計散熱模組之散熱效益。結果顯示,在原始參考模型外觀尺寸不變下,在自然對流下透過加入熱管與提高LED散熱基板及PCB之熱傳係數,可有效使LED晶片接面溫度降低,使高功率LED頭燈在安全溫度範圍內,保持元件可靠度。並另行設計一平板式散熱鰭片搭配熱管之設計,以加速內部流場對流通過,更能使LED晶片接面溫度有效降低,並以車燈環境溫度80℃進行模擬測試,設計達到更加安全的操作溫度範圍內。
Due to the progress of packaging capacity for the LED industry, modern LED technologies had reached cost reduction, high efficiency, quick response, long lifetime, thin and small, easy to design and many other advantages. Recently, LED has been widely used in the application of automotive lighting as the light source, and it began to replace the old Halogen lamps and High Intensity Discharge Lamp. The study of LED lightening for automobile draws lots of attention from the research and development of automobile industry and manufacturing. However, during the lightening operation of LED, the chip junction temperature rise can reduce the luminous efficiency and lifetime of LED. Moreover, the LED package structure is not heat resistance. Therefore, when the LED chip junction temperature reaches too high, the chip and the packaging material will cause the permanent damage. Overheating is the main problem in the application of the high power LED. To improve stability and lifetime span of the high power LED headlamp, heat dissipation mechanism design is the significant issues.
In this study, the CFD software is used to study the original model of commercial high power LED headlamps. It is analyzed and designed for the heat dissipation. By adding a combination of groove heat pipe design and heat sink, changing the LED packaging substrate and PCB material parameters, we observe the LED chip junction temperature and to discuss the design of thermal dissipation module for heat dissipation. Our simulation results show that under the condition using the high heat conduction coefficient of the substrate and the PCB and combination of groove heat pipe and heat sink will result in lower the chip junction temperature, and maintain high power LED headlamps in the safe temperature range. In addition, with the design of a flat-panel heat sink with heat pipe design can speed up the internal flow through the LED chip junction and can lower its temperature than the previous structure to achieve better safe working temperature.
摘 要 i
Abstract ii
目錄 iii
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 車用高功率LED發展趨勢 4
1.3 高功率LED車燈散熱問題 7
1.3.1 散熱器介紹與應用 9
1.4 文獻回顧 13
1.5 研究動機與目的 16
1.6 論文架構 18
第二章 理論分析與散熱模組設計 19
2.1 熱傳遞原理 19
2.1.1 熱傳導(Thermal Conduction) 19
2.1.2 熱對流(Thermal Convection) 21
2.1.3 熱阻定義(Thermal Resistance) 21
2.2 LED 熱阻結構 22
2.2.1 LED 封裝熱阻 23
2.2.2 接觸熱阻(Thermal Contact Resistance) 24
2.3 LED 熱管理論與介紹 25
2.3.1 熱管介紹與工作原理 25
2.3.2 熱管特性限制 27
2.3.3 熱管等效熱阻 29
2.4 流體型態的判定 30
2.5 高功率LED封裝散熱基板介紹 32
第三章 實驗架構與數值分析方法 37
3.1 高功率LED車燈實驗模型與散熱設計 37
3.2 高功率LED車燈熱阻介紹 40
3.3 實驗量測介紹 41
3.3.1 實驗架設與量測點位置 41
3.3.2 溫度量測結果整理 44
3.4 數值模擬分析 47
3.4.1 ANSYS軟體簡介 47
3.4.2 統御方程式 49
3.4.3 Boussinesq 近似法 50
3.4.4數值計算理論 51
3.5 散熱設計需求與目標 53
第四章 幾何模型建立與模擬驗證 55
4.1前處理介紹 55
4.1.1數值模型建立 55
4.1.2網格建立 58
4.2參數設定 59
4.2.1材料設定 59
4.2.2邊界條件設定 60
4.2.3發熱源瓦數校正與網格選擇設定 61
第五章 數值模擬結果與討論 63
5.1 被動式散熱條件下PCB板材料選擇 63
5.2 加入熱管的散熱效益 64
5.3 散熱基板熱傳導係數的改變 71
5.4 熱管長度改變的影響 74
5.5 散熱鰭片形狀設計與空氣對流影響 80
第六章 結論與未來展望 88
6.1 結論 88
6.2 未來展望 89
參考文獻 91
[1]A. S. Kuznetsov, V. K. Tikhomirov, M. V. Shestakov and V. V. Moshchalkov, “Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors,” Nanoscale, vol. 5, no. 21, pp. 10065-10075, 2013. doi:10.1039/C3NR02798H
[2]N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state lighting: failure analysis of white LEDs,”Journal of Crystal Growth, vol. 268, pp. 449-456, 2004. doi: 10.1016/j.jcrysgro.2004.04.071.
[3]CREE, “Cree® XLamp® XHP70 LEDs,” Product family data sheet, 2014-2017, http://www.cree.com
[4]弘凱光電股份有限公司,http://www.brightekled.com/
[5]集邦科技(TrendForce),http://www.ledinside.com.tw/
[6]M. Arik, J. Petroski, S. Weaver, “Thermal challenges in the future generation solid state lighting applications: light emitting diodes,” Conference: Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2002. doi: 10.1109/ITHERM.2002.1012446.
[7]Philips Lumileds Lighting, U.S. LLC., “Power Light Source LUXEON III Emitter”, Technical Datasheet DS45,www.lumileds.com
[8]李龍育,高功率LED汽車頭燈散熱設計之模擬與實驗整合研究,國立臺灣科技大學機械工程系,碩士論文,2008。
[9]CREE, “Thermal Management of Cree® XLamp® LEDs,” Application Note, 2012-2017, http://www.cree.com
[10]Amir Faghri, HEAT PIPES: REVIEW, OPPORTUNITIES AND CHALLENGES, Frontiers in Heat Pipes (FHP) 5 – 1, 2014. DOI: doi:10.5098/fhp.5.1, ISSN: 2155-658X.
[11]M. Arik and S. Weaver, “Chip Scale Thermal Management of High Brightness LED Packages,” Proc. of SPIE Vo1. 5530, pp. 214-223, 2004. doi:10.1117/12.566061
[12]M. W. Shin, “Thermal Design of High-Power LED Package and System,” Proc. Of SPIE Vo1. 635509, pp. 1-13, 2006. doi:10.1117/12.690928.
[13]N. Narendran, “Long-term performance of white LEDs and systems,” Proceeding of First international Conference on White LEDs and Solid State Lighting, Tokyo, Japan, pp. 174-179, 2007.
[14]K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, “Thermal performance of high brightness LED array package on PCB,” International Communications in Heat and Mass Transfer, vol. 37, pp. 1266-1272, 2010.
[15]Faghri, A., 1994, “Centrifugal Heat Pipe System,” U.S. Patent No.5297619.
[16]Faghri, A., 1995, Heat Pipe Science and Technology, 1st ed., Taylor & Francis, Washington, D.C.
[17]J. E. Deverall and J. E. Kemme, “Satellite Heat Pipe,” USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, 1970.
[18]Perkins, J., 1836, UK Patent No. 7059.
[19]Anonymous, “The Paris Exhibition – Perkins’ Portable Oven,” The Engineer, pp. 519, 1867.
[20]Gaugler, R., 1944, “Heat Transfer Device,” U.S. Patent No. 2350348.
[21]Grover, G., 1966, “Evaporation-Condensation Heat Transfer Device,” U.S. Patent No. 3229759.
[22]Grover, G. M., Cotter, T. P., and Erickson, G. F., 1964, “Structures of very High Thermal Conductance,” Journal of Applied Physics, 35(6), 1990-1991.DOI: 10.1063/1.1713792.
[23]T. P. Cotter, “Theory of Heat Pipes,” Los Alamos Scientific Laboratory Report No. LA-3246-MS, 1965.
[24]T. P. Cotter, Principles and Prospects for Micro Heat Pipes. Proceedings of the 5th International Heat Pipe Conference, Tsukuba, 328-335, 1984.
[25]G. A. Asselman and D. B. Green, “Heat Pipes,” Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[26]H. Kozai, “The Effective Thermal Conductivity of Screen Wick,” Proc. 3rd Int. Heat Pipe Symposium, Tsukuba. Japan Association for Heat Pipe, 1988.
[27]J. C. Maxwell, “A Treatise on Electricity and Magnetism,” vol. 1, 3rd Edn. OUP(1981), 1954.
[28]I. Sauciuc, M. Mochizuki, K. Mashiko, Y. Saito, T. Nguyen, “The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications,” Semiconductor Thermal Measurement and Management Symposium. Sixteenth Annual IEEE, 2000.DOI:10.1109/STHERM.2000.837058
[29]J. Legierski, B. Wiecek and A. D. Mey, “Measurements and Simulations of Transient Characteristics of Heat Pipes”, Microelectronics Reliability, vol. 46, pp. 109-115, 2006.
[30]X. Y. Lu, T. C. Hua, M. J. Liu and Y. X. Cheng, Thermal analysis of loop heat pipe used for high-power LED, Thermochim. Acta, vol. 493, Issues 1–2, 2009, pp 25–29, 2009. DOI:10.1016/j.tca.2009.03.016
[31]徐國懷,填充量與真空度對熱管最大熱傳量之影響,國立清華大學工程與系統科學研究所,碩士論文,2011年。
[32]M. Mochizuki, Y. Saito, K. Goto, and T. Nguyen, “Hinged Heat Pipe for Cooling Notebooks PCs,” IEEE SEMI-THERM Symposium, pp. 64-72, 1997.
[33]T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, R. Boggs, “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 1, pp. 86-90, 2000.
[34]K. S. Kim, “ Heat pipe cooling technology for desktop PC CPU,” Applied Thermal Engineering, vol. 23, pp. 1137-1144, 2003.
[35]呂孟恭,熱管散熱模組應用於繪圖處理器系統測試散熱模擬與設計,國立高雄應用科技大學模具工程系,碩士論文,2012年。
[36]林顯群、李龍育、鄭光廷、顏則修、張光仁,高功率LED 應用於機車頭燈上之散熱設計,第11 屆車輛工程學術研討會,2006年。
[37]蕭飛賓、江志煌,高功率LED 模組應用於汽車適路性頭燈系統之熱傳分析與設計,中國機械工程學會第23 屆全國學術研討會論文集,2006年。
[38]李龍育,高功率LED汽車頭燈散熱設計之模擬與實驗整合研究,國立台灣科技大學機械工程研究所,碩士論文,2008年。
[39]E. D. Jung, Y. L. Lee, “Study on the Development of LED Headlamps for Used Cars,” Transactions on Electrical and Electronic Materials, vol. 15, no. 5, pp. 270-274, 2014.
[40]E. D. Jung, Y. L. Lee, “Development of a heat dissipating LED headlamp with silicone lens to replace halogen bulbs in used cars,” Applied Thermal Engineering, vol. 86, pp. 143-150, 2015.
[41]林瑞晟,熱管在LED上之應用,國立中央大學光電科學與工程學系,碩士論文,2015年。
[42]陳建宏,以田口法優化LED車燈散熱系統之研究,國立中央大學光電科學與工程學系,碩士論文,2015年。
[43]江岳穎,白光發光二極體之投射式近光汽車頭燈設計,國立成功大學工程科學系,碩士論文,2015年。
[44]C. Xiao, H. Liao, Y. Wang, J. Li, W. Zhu, “A novel automated heat-pipe cooling device for high-power LEDs,” Applied Thermal Engineering, vol. 111, pp. 1320–1329, 2017
[45]F. P. Incropera, D. P. DeWitt, T. L. Bergmann and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th Edition., Wiley. ISBN-13: 978-0471457282.
[46]璦司柏電子股份有限公司,http://www.icprotect.com.tw/index.html
[47]CREE, “Optimizing PCB Thermal Performance for Cree® XLamp® LEDs”, Application Note, 2012-2017, http://www.cree.com
[48]竣丞國際有限公司,http://www.jc-heatpipe.com/index.html
[49]S. V. Patankar and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol.15, pp. 1787-1806, 1972.
[50]ANSYS,http://www.ansys.com/zh-TW.
[51]北京兆迪科技有限公司,ANSYS Worbench 14.0 結構分析快速入門進階與精通,電子工業出版社。
[52]Fluent 6.2 User’s Guide, Fluent Inc., 2005.
[53]虎門科技股份有限公司,http://www.cadmen.com/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊