跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀易廷
研究生(外文):I-Ting Chi
論文名稱:基於B-spline曲線樑之撓性雙穩態機構的最佳化設計與特性分析
論文名稱(外文):Optimization Design and Characterization of a Compliant Bistable Mechanism with B-spline Curved Beams
指導教授:王東安
指導教授(外文):Dung-An Wang
口試委員:鄒慶福楊世宏
口試委員(外文):Ching-Fu TsouShi-Hong Yang
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:有限元素法B-spline曲線撓性雙穩態機構基因演算法
外文關鍵詞:B-spline curvecompliant bistable mechanismgenetic algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究係運用有限元素法對基於B-spline曲線樑之撓性雙穩態機構(compliant bistable mechanism)進行力與位移的特性分析。其機構組成包含樑(beams)與質量塊(shuttle mass),每一個樑皆具有一個強化段(reinforced segment);樑之造型為B-spline的曲線型式。調整B-spline曲線的控制點位置與強化段的長度,藉以分析模擬形狀不同的撓性機構;由模擬分析結果可得到其力與位移之曲線圖,用以判讀其雙穩態特性,進而獲得具備雙穩態特性之撓性機構設計。
最佳化設計的目標為獲致撓性雙穩態機構之輸出力的最大值與最小值接近設定的目標值。除了運用有限元素法進行雙穩態特性分析,並運用基因演算法進行最佳化設計,以得到實驗原型之B-spline曲線的控制點位置參數與強化段的長度參數。使用電腦數值控制雕銑機加工POM板材,以得到經最佳化設計的實驗原型。實驗量測原型之力與位移的關係,實驗結果與分析結果一致。
In this research, the finite element method is adopted to analyze the force and the displacement relation of a compliant bistable mechanism with B-spline curved beams. The mechanism consists of B-spline curved beams and a shuttle mass. The curve beams have a reinforced segment at the center of each beam.
Nearly equivalent maximum force output in the forward and backward motion direction of the mechanism is achieved by an optimization design approach. The optimization design approach is based on a genetic algorism. The force-displacement relation of the mechanism is obtained by finite element analyses. The design parameters are the control points of the B-spline curve and the length of the reinforced segment. Prototypes are fabricated by a numerical controlled engraving machine. Experiments are carried out to measure the force-displacement curve of the fabricated prototype. The experimental results agree with the results of the finite element analyses.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1. 研究背景及動機 1
1.2. 文獻回顧 2
1.3. 論文架構 2
第二章 機構原理與設計概念 4
2.1. 撓性雙穩態機構原理 4
2.2. 撓性雙穩態機構的設計 5
2.3. B-spline曲線 5
2.4. 有限元素分析 8
2.5. 基因演算法與最佳化設計 8
第三章 機構設計及分析 14
3.1. 雙穩態機構設計 14
3.2. 雙穩態機構分析 14
3.3. 最佳化設計 14
第四章 實驗與特性分析 28
4.1. 原型設計製作 28
4.2. 實驗裝置 28
4.3. 量測結果 29
第五章 結論 36
參考文獻 37
[1]M.R. Brake, M.S. Baker, N.W. Moore, D.A. Crowson, J. A. Mitchell, J.E. Houston, Modeling and measurement of a bistable beam in a microelectromechanical System, Journal of Microelectromechanical Systems 19 (2010) 1503-1514.
[2]B.J. Hansen, C.J. Carron, B.D. Jensen, A.R. Hawkins, S.M. Schultz, Plastic latching accelerometer based on bistable compliant mechanisms, Smart Materials and Structures 16 (2007) 1967-1972.
[3]T. Gomm, L.L. Howell, R.H. Selfridge, In-plane linear displacement bistable microrelay, Journal of Micromechanics and Microengineering 12 (2002) 257–264.
[4]M. Hafez, M.D. Lichter, S. Dubowsky, Optimized binary modular reconfigurable robotic devices, IEEE-ASME Transactions on Mechatronics 8 (2003) 304-326.
[5]M.A. Pucheta, A. Cardona, Design of bistable compliant mechanisms using precision-position and rigid-body replacement methods, Mechanism and Machine Theory 45 (2010) 304-326.
[6]B. Ando’, S. Baglio, G. L’Episcopo, C. Trigona, Investigation on mechanically bistable MEMS devices for energy harvesting from vibration, Journal of Microelectromechanical Systems 21 (2012) 779-790.
[7]A. Frangi, B.D. Masi, F. Confalonieri, S. Zerbini, Threshold shock sensor based on a bistable mechanism: design, modeling and measurements, Journal of Microelectromechanical Systems 24 (2015) 2019-2026.
[8]S.Y. Wu, C.Y. Hung, W. Hsu, A wirelessly readable and resettable shock recorder through the integration of LC circuits and MEMS devices, Smart Materials and Structures 23 (2014) 095030.
[9]J. Qiu, J.H. Lang, A.H. Slocun, A curved-beam bistable mechanism, Journal of Microelectromechanical Systems 13 (2004) 137-146.
[10]I.H. Hwang, Y.S. Shim, J.H. Lee, Modeling and experimental characterization of the chevron-type bistable microactuator, Journal of Micromechanics and Microengineering 13 (2003) 948- 954.
[11]J. Tsay, H.A. Chang, C.K. Sung, Design and experiments of fully compliant bistable micromechanisms, Mechanism and Machine Theory 40 (2005) 17-31.
[12]D.L. Wilcox, L.L. Howell, Fully compliant tensural bistable micromechanisms, Journal of Microelectromechanical Systems 14 (2005) 1223-1235.
[13]J. Qiu, J.H. Lang, A.H. Slocum, A bulk-micromachined bistable relay with U-shaped thermal actuators, Journal of Microelectromechanical Systems 14 (2005) 1099-1109.
[14]J. Casals-Terre, A. Shkel, Snap-action bistable micromechanism actuated by nonlinear resonance, Journal of Microelectromechanical Systems 17 (2008) 1082-1093.
[15]Y.-Y. Yang, B.-T. Liao, W.-C. Kuo, A novel 2 X 2 MEMS optical switch using the split cross-bar design, Journal of Micromechanics and Microengineering 17 (2007) 875-882.
[16]D.K.T. Ngoc, D.-A. Wang, Design of a crab-like bistable mechanism for nearly equal switching forces in forward and backward directions, Mechanism and Machine Theory 115 (2017) 114-129.
[17]H. Yu, Z. Jian, L. Shutian, Design optimization of segment-reinforced bistable mechanisms exhibiting adjustable snapping behavior, Sensors and Actuators 252 (2016). 7-15.
[18]G.L. Holst, G.H. Teichert, B.D. Jensen, Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms, Journal of Mechanical Design 133 (2011) 051002.
[19]S.A. Zirbel, K.A. Tolman, B.P. Trease, L.L. Howell, Bistable mechanisms for space applications, Plos One 11 (2016) e0168218.
[20]N.D. Masters, L.L. Howell, A self-retracting fully compliant bistable micromechanism, Journal of Microelectromechanical Systems 12 (2003) 273-280.
[21]C. Guimin, M. Fulei, Kinetostatic modeling of fully compliant bistable mechanisms using Timosheko beam constraint model, Journal of Mechanical Design 137 (2015) 022301.
[22]D.F. Rogers, J.A. Adams, Mathematical Elements for Computer Graphics, 2nd edition, McGRAW-Hill, New York, 1990.
[23]R.W. Clough, Original formulation of the finite element method, Finite Elements in Analysis and Design 7 (1990) 89-101.
[24]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182-197.
[25]H.-T. Pham, D.-A. Wang, A quadristable compliant mechanism with bistable structure embedded in a surrounding beam structure, Sensor and Actuators A-physical 167 (2011) 438-448.
[26]A.Z. Zakaria, K. Shelesh-Nezhad, The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites, Nanomaterials and Nanotechnology 4 (2014) 17.
[27]精密彈簧筒夾之標準規範為DIN6499B/ISO15488B.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊