|
[1]M.R. Brake, M.S. Baker, N.W. Moore, D.A. Crowson, J. A. Mitchell, J.E. Houston, Modeling and measurement of a bistable beam in a microelectromechanical System, Journal of Microelectromechanical Systems 19 (2010) 1503-1514. [2]B.J. Hansen, C.J. Carron, B.D. Jensen, A.R. Hawkins, S.M. Schultz, Plastic latching accelerometer based on bistable compliant mechanisms, Smart Materials and Structures 16 (2007) 1967-1972. [3]T. Gomm, L.L. Howell, R.H. Selfridge, In-plane linear displacement bistable microrelay, Journal of Micromechanics and Microengineering 12 (2002) 257–264. [4]M. Hafez, M.D. Lichter, S. Dubowsky, Optimized binary modular reconfigurable robotic devices, IEEE-ASME Transactions on Mechatronics 8 (2003) 304-326. [5]M.A. Pucheta, A. Cardona, Design of bistable compliant mechanisms using precision-position and rigid-body replacement methods, Mechanism and Machine Theory 45 (2010) 304-326. [6]B. Ando’, S. Baglio, G. L’Episcopo, C. Trigona, Investigation on mechanically bistable MEMS devices for energy harvesting from vibration, Journal of Microelectromechanical Systems 21 (2012) 779-790. [7]A. Frangi, B.D. Masi, F. Confalonieri, S. Zerbini, Threshold shock sensor based on a bistable mechanism: design, modeling and measurements, Journal of Microelectromechanical Systems 24 (2015) 2019-2026. [8]S.Y. Wu, C.Y. Hung, W. Hsu, A wirelessly readable and resettable shock recorder through the integration of LC circuits and MEMS devices, Smart Materials and Structures 23 (2014) 095030. [9]J. Qiu, J.H. Lang, A.H. Slocun, A curved-beam bistable mechanism, Journal of Microelectromechanical Systems 13 (2004) 137-146. [10]I.H. Hwang, Y.S. Shim, J.H. Lee, Modeling and experimental characterization of the chevron-type bistable microactuator, Journal of Micromechanics and Microengineering 13 (2003) 948- 954. [11]J. Tsay, H.A. Chang, C.K. Sung, Design and experiments of fully compliant bistable micromechanisms, Mechanism and Machine Theory 40 (2005) 17-31. [12]D.L. Wilcox, L.L. Howell, Fully compliant tensural bistable micromechanisms, Journal of Microelectromechanical Systems 14 (2005) 1223-1235. [13]J. Qiu, J.H. Lang, A.H. Slocum, A bulk-micromachined bistable relay with U-shaped thermal actuators, Journal of Microelectromechanical Systems 14 (2005) 1099-1109. [14]J. Casals-Terre, A. Shkel, Snap-action bistable micromechanism actuated by nonlinear resonance, Journal of Microelectromechanical Systems 17 (2008) 1082-1093. [15]Y.-Y. Yang, B.-T. Liao, W.-C. Kuo, A novel 2 X 2 MEMS optical switch using the split cross-bar design, Journal of Micromechanics and Microengineering 17 (2007) 875-882. [16]D.K.T. Ngoc, D.-A. Wang, Design of a crab-like bistable mechanism for nearly equal switching forces in forward and backward directions, Mechanism and Machine Theory 115 (2017) 114-129. [17]H. Yu, Z. Jian, L. Shutian, Design optimization of segment-reinforced bistable mechanisms exhibiting adjustable snapping behavior, Sensors and Actuators 252 (2016). 7-15. [18]G.L. Holst, G.H. Teichert, B.D. Jensen, Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms, Journal of Mechanical Design 133 (2011) 051002. [19]S.A. Zirbel, K.A. Tolman, B.P. Trease, L.L. Howell, Bistable mechanisms for space applications, Plos One 11 (2016) e0168218. [20]N.D. Masters, L.L. Howell, A self-retracting fully compliant bistable micromechanism, Journal of Microelectromechanical Systems 12 (2003) 273-280. [21]C. Guimin, M. Fulei, Kinetostatic modeling of fully compliant bistable mechanisms using Timosheko beam constraint model, Journal of Mechanical Design 137 (2015) 022301. [22]D.F. Rogers, J.A. Adams, Mathematical Elements for Computer Graphics, 2nd edition, McGRAW-Hill, New York, 1990. [23]R.W. Clough, Original formulation of the finite element method, Finite Elements in Analysis and Design 7 (1990) 89-101. [24]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182-197. [25]H.-T. Pham, D.-A. Wang, A quadristable compliant mechanism with bistable structure embedded in a surrounding beam structure, Sensor and Actuators A-physical 167 (2011) 438-448. [26]A.Z. Zakaria, K. Shelesh-Nezhad, The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites, Nanomaterials and Nanotechnology 4 (2014) 17. [27]精密彈簧筒夾之標準規範為DIN6499B/ISO15488B.
|