|
[1]R. B. Kaner, J. J. Gilman, and S. H. Tolbert, “Designing Superhard Materials,” Science, Vol. 308(5726), pp. 1268-1269 (2005). DOI: 10.1126/science.1109830 [2]C. P. Klages, M. Fryda, T. Matthée, L. Schäfer, and H. Dimigen, “Diamond coatings and cBN coatings for tools,” International Journal of Refractory Metals and Hard Materials, Vol. 16(3), pp. 171-176 (1998). DOI: 10.1016/S0263-4368(98)80100-5 [3]S. Vepřek, “The search for novel, superhard materials,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 17, pp. 2401 (1999). DOI: 10.1116/1.581977 [4]S. Zhang, D. Sun, Y. Fu, and H. Du, ” Recent advances of superhard nanocomposite coatings: a review,” Surface and Coatings Technology, Vol. 167(2-3), pp. 113-119 (2003). DOI: 10.1016/S0257-8972(02)00903-9 [5]F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, “Hardness of Covalent Crystals,” Physical Review Letters, Vol. 91, 015502 (2003). DOI: 10.1103/PhysRevLett.91.015502 [6]Q. Fan, C. Chai, Q. Wei, and Y. Yang,” Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties,” Materials, Vol. 9(6), 427 (2016). DOI: 10.3390/ma9060427 [7]R. H. Wentorf Jr., “Cubic Form of Boron Nitride,” The Journal of Chemical Physics, Vol. 26, pp. 956 (1957). DOI: 10.1063/1.1745964 [8]T. Taniguchi, M. Akaishi, and S. Yamaoka, “Mechanical Properties of Polycrystalline Translucent Cubic Boron Nitride as Characterized by the Vickers Indentation Method,” Journal of the American Ceramic Society, Vol. 79(2), pp. 547-549 (1996). DOI: 10.1111/j.1151-2916.1996.tb08165.x [9]I. Bello, Y. M. Chong, K. M. Leung, C. Y. Chan, K. L. Ma, W. J. Zhang, S. T. Lee, and A. Layyous, “Cubic boron nitride films for industrial applications,” Diamond and Related Materials, Vol. 14(11-12), pp. 1787-1790 (2005). DOI: 10.1016/j.diamond.2005.09.003 [10]F. P. Bowden, J. E. Young, and G. Rowe, “Friction of Diamond, Graphite and Carbon: The Influence of Adsorbed Films,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 212(1111), pp.485-488 (1952). Stable URL: http://www.jstor.org/stable/98976 [11]Z. J. Li, F. Z. Fang, H. Gong, and X. D. Zhang, “Review of diamond-cutting ferrous metals,” The International Journal of Advanced Manufacturing Technology, Vol. 68(5), pp 1717-1731 (2013). DOI: 10.1007/s00170-013-4970-5 [12]A. G. Thornton, and J. Wilks, “The wear of diamond tools turning mild steel,” Wear, Vol. 65(1), pp. 67-74 (1980). DOI: 10.1016/0043-1648(80)90009-5 [13]S. Shimada, H. Tanaka, M. Higuchi, T. Yamaguchi, S. Honda, and K. Obata, “Thermo-Chemical Wear Mechanism of Diamond Tool in Machining of Ferrous Metals,” CIRP Annals - Manufacturing Technology, Vol. 53(1), pp. 57-60 (2004). DOI: 10.1016/S0007-8506(07)60644-1 [14]E. Paul, C. J. Evans, A. Mangamelli, M. L. McGlauflin, and R. S. Polvani, “Chemical aspects of tool wear in single point diamond turning,” Precision Engineering, Vol. 18(1), pp. 4-19 (1996). DOI: 10.1016/0141-6359(95)00019-4 [15]N. Suzuki (2011, March), Ultraprecision sculpturing of hardened steel by applying elliptical vibration cutting. Paper/Poster session presented at ISUPEN2011, Tokyo, Japan. URL: http://www.jspe.or.jp/wp_e/wp-content/uploads/isupen/2012s/2012s-2-1.pdf [16]J. F. Morhange, R. Beserman, and J. C. Bourgoin, “Study of Defects Introduced by Ion Implantation in Diamond,” Japanese Journal of Applied Physics, Vol. 14(4), pp. 544 (1975). DOI: 10.1143/JJAP.14.544 [17]C. M. Sung, and M. Sung, “Carbon nitride and other speculative superhard materials,” Materials Chemistry and Physics, Vol. 43(1), pp. 1-18 (1996). DOI: 10.1016/0254-0584(95)01607-V [18]K. Li, X. Wang, F. Zhang, and D. Xue, “Electronegativity Identification of Novel Superhard Materials,” Physical Review Letters, Vol. 100, 235504 (2008). DOI: 10.1103/PhysRevLett.100.235504 [19]O. Z. Lozynskyy, V. Varchenko, N. Tischenko, A. Ragulya, M. Andrzejczuk, and A. Polotai, “Tribological behaviour of Si3N4-based nanocomposites,” Tribology International, Vol. 91 ,pp. 85-93 (2015). DOI: 10.1016/j.triboint.2015.06.027 [20]Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, T. Ohji, and K. Hirao, “Development of high-thermal-conductivity silicon nitride ceramics,” Journal of Asian Ceramic Societies, Vol. 3(3), pp. 221-229 (2015). DOI: 10.1016/j.jascer.2015.03.003 [21]B. Xu, J. Dong, P. F. McMillan, O. Shebanova, and A. Salamat, “Equilibrium and metastable phase transitions in silicon nitride at high pressure: A first-principles and experimental study,” Physical Review B, Vol. 84, 014113 (2011). DOI: 10.1103/PhysRevB.84.014113 [22]D. S. Fox, “Oxidation Behavior of Chemically-Vapor-Deposited Silicon Carbide and Silicon Nitride from 1200° to 1600°C,” Journal of the American Ceramic Society, Vol. 81(4), pp. 945-950 (1998). DOI: 10.1111/j.1151-2916.1998.tb02431.x [23]F. L. Riley, “Silicon Nitride and Related Materials,” Journal of the American Ceramic Society, Vol. 83(2), pp. 245-265 (2000). DOI: 10.1111/j.1151-2916.2000.tb01182.x [24]A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß, P. Kroll, and R. Boehler, “Synthesis of cubic silicon nitride,” Nature, Vol. 400, pp. 340-342 (1999). DOI: 10.1038/22493 [25]J. Z. Jiang, F. Kragh, D. J. Frost, K. StÃ¥hl, and H. Lindelov, “Hardness and thermal stability of cubic silicon nitride,” Journal of Physics: Condensed Matter, Vol. 13(22), L515-L520 (2001). DOI: 10.1088/0953-8984/13/22/111 [26]L. Cui, M. Hu, Q. Wang, B. Xu, D. Yu, Z. Liu, and J. He, “Prediction of novel hard phases of Si3N4: First-principles calculations,” Journal of Solid State Chemistry, Vol. 228, pp. 20-26 (2015). DOI: 10.1016/j.jssc.2015.04.002 [27]M. L. Cohen, “Calculation of bulk moduli of diamond and zinc-blende solids,” Physical Review B, Vol. 32, pp. 7988 (1985). DOI: 10.1103/PhysRevB.32.7988 [28]A. Y. Liu, and M. L. Cohen, “Structural properties and electronic structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4,” Physical Review B, Vol. 41(15), pp. 10727-10734 (1990). DOI: 10.1103/PhysRevB.41.10727 [29]T. Hashimoto, and M. Kohyama, “Ground-state structure of beta-C3N4 by first-principles calculations,” Physical Review B, Vol. 64(1) , pp. 2103 (2001). DOI: 10.1103/PhysRevB.64.012103 [30]L. W. Yin, Y. Bando, M. S. Li, Y. X. Liu, and Y. X. Qi, “Unique Single-Crystalline Beta Carbon Nitride Nanorods,” Advanced Materials, Vol. 15(21), pp. 1840-1844 (2003). DOI: 10.1002/adma.200305307 [31]J. He, L. Guo, X. Guo, R. Liu, and Y. Tiana, “Predicting hardness of dense C3N4 polymorphs,” Applied Physics Letters, Vol. 88, 101906 (2006). DOI: 10.1063/1.2182109 [32]R. W. Cahn, “Harder than diamond?,” Nature, Vol. 380, pp. 104-105 (1996). DOI: 10.1038/380104a0 [33]J. C. Zheng, H. Q. Wang, A. T. S. Wee, and C. H. A. Huan, “Possible complete miscibility of (BN)x(C2)1-x alloys,” Physical Review B, Vol. 66(9), 092104 (2002). DOI: 10.1103/PhysRevB.66.092104 [34]Y. Wen, C. Zhuang, X. Jiang, J. Zhao, and X. Jiang, “Searching superhard cubic phases in ternary B–C–N phase diagram using first-principles calculations,” Diamond and Related Materials, Vol. 27-28, pp. 14-18 (2012). DOI: 10.1016/j.diamond.2012.05.003 [35]C. Zhuang, J. Zhao, X. Jiang, and X. Jiang, “Structural stability, mechanical and electronic properties of cubic BCxN crystals within a random solid solution model,” Journal of Physics: Condensed Matter, Vol. 21(40), 405401 (2009). DOI: 10.1088/0953-8984/21/40/405401 [36]P. Wang, D. He, L. Wang, Z. Kou, Y. Li, L. Xiong, Q. Hu, C. Xu, Li Lei, Q. Wang, J. Liu, and Y. Zhao, “Diamond-cBN alloy: A universal cutting material,” Applied Physics Letters, Vol. 107(10), 101901 (2015). DOI: 10.1063/1.4929728 [37]V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie, “Synthesis of superhard cubic BC2N,” Applied Physics Letters, Vol. 78(10), pp. 1385 (2001). DOI: 10.1063/1.1337623 [38]R. Gago, I. Jiménez, I. Garcı́a, and J.M. Albella, “Growth and characterisation of boron–carbon–nitrogen coatings obtained by ion beam assisted evaporation,” Vacuum, Vol. 64(3-4), pp. 199-204 (2002). DOI: 10.1016/S0042-207X(01)00314-1 [39]Q. Li, D. Zhou, H. Wang, W. Chen, B. Wu, Z. Wu, and W. Zheng, “Crystal and electronic structures of superhard B2CN: An ab initio study,” Solid State Communications, Vol. 152(2), pp. 71-75 (2012). DOI: 10.1016/j.ssc.2011.10.042 [40]X. F. Zhou, J. Sun, Q. R. Qian, X. Guo, Z. Liu, Y. Tian, and H. T. Wang, “A tetragonal phase of superhard BC2N,” Journal of Applied Physics, Vol. 105(9), 093521 (2009). DOI: 10.1063/1.3117521 [41]A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, “Atomic arrangement and electronic structure of BC2N,” Physical Review B, Vol. 39, pp. 1760 (1989). DOI: 10.1103/PhysRevB.39.1760 [42]M. Mattesini, and S.F. Matar, “Search for ultra-hard materials: theoretical characterisation of novel orthorhombic BC2N crystals,” International Journal of Inorganic Materials, Vol. 3(7), pp. 943-957 (2001). DOI: 10.1016/S1466-6049(01)00085-X [43]H. Sun, S. H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, “Structural forms of cubic BC2N,” Physical Review B, Vol. 64, 094108 (2001). DOI: 10.1103/PhysRevB.64.094108 [44]D. M. Teter, and R. J. Hemley, “Low-Compressibility Carbon Nitrides,” Science, Vol. 271(5245), pp. 53-55 (1996). DOI: 10.1126/science.271.5245.53 [45]G. Kresse, and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6(1), pp. 15-50 (1996). DOI: 10.1016/0927-0256(96)00008-0 [46]G. Kresse, and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169 [47]G. Kresse, and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245 (1994). DOI: 10.1088/0953-8984/6/40/015 [48]J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering: R: Reports, Vol. 37(4-6), pp.129-281 (2002). DOI: 10.1016/S0927-796X(02)00005-0 [49]N. Dubrovinskaia, V. L. Solozhenko, N. Miyajima, V. Dmitriev, O. O. Kurakevych, and L. Dubrovinsky, “Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness,” Applied Physics Letters, Vol. 90(10), 101912 (2007). DOI: 10.1063/1.2711277 [50]R. Grün, “The crystal structure of β-Si3N4: structural and stability considerations between α- and β-Si3N4,” Acta Crystallographica Section B, Vol. B35, pp. 800-804 (1979). DOI: 10.1107/S0567740879004933 [51]S. N. Ruddlesden and P. Popper, “On the crystal structure of the nitrides of silicon and germanium,” Acta Crystallographica, Vol. 11, pp. 465-468 (1958). DOI: 10.1107/S0365110X58001304 [52]M. Yashima, Y. Ando, and Y. Tabira, “Crystal Structure and Electron Density of α-Silicon Nitride: Experimental and Theoretical Evidence for the Covalent Bonding and Charge Transfer,” The Journal of Physical Chemistry B, Vol. 111(14), pp. 3609-3613 (2007). DOI: 10.1021/jp0678507 [53]N. V. Danilenko, G. S. Oleinik, V. D. Dobrovol'skii, V. F. Britun, and N. P. Semenenko, “Microstructural features of the α→β transformation in silicon nitride at high pressures and temperatures,” Powder Metallurgy and Metal Ceramics, Vol. 31(12), pp. 1035-1040 (1992). DOI: 10.1007/BF00797765 [54]H. Suematsu, M. Mitomo, T. E. Mitchell, J. J. Petrovic, O. Fukunaga, and N. Ohashi, “The α–β Transformation in Silicon Nitride Single Crystals,” Journal of the American Ceramic Society, Vol. 80(3), pp. 615-620 (1997). DOI: 10.1111/j.1151-2916.1997.tb02876.x [55]P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136(3B), B864 (1964). DOI: 10.1103/PhysRev.136.B864 [56]W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 136(4A), A1133 (1965). DOI: 10.1103/PhysRev.140.A1133 [57]J. P. Perdew and Y. Wang, “Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Physical Review B, Vol. 33(12), 8800(R) (1986). DOI: 10.1103/PhysRevB.33.8800 [58]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46(11), pp. 6671 (1986). DOI: 10.1103/PhysRevB.46.6671 [59]J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77(18), pp. 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865 [60]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “terative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045 (1992). DOI: 10.1103/RevModPhys.64.1045 [61]F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Physical Review B, Vol. 90, 224104 (2014). DOI: 10.1103/PhysRevB.90.224104 [62]M. Born, “On the stability of crystal lattices. I,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 36(2), pp. 160-172 (1940). DOI: 10.1017/S0305004100017138 [63]R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society. Section A, Vol. 65(5), pp. 349-354 (1952). DOI: 10.1088/0370-1298/65/5/307 [64]Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Physical Review B, Vol. 76, 054115 (2007). DOI: 10.1103/PhysRevB.76.054115 [65]S. I. Ranganathan and M. O. Starzewski, “Universal Elastic Anisotropy Index,” Physical Review Letters, Vol. 101, 055504 (2008). DOI: 10.1103/PhysRevLett.101.055504 [66]C. M. Kube, “Elastic anisotropy of crystals,” AIP Advances, Vol. 6(9), 095209 (2016). DOI: 10.1063/1.4962996 [67]S. D. Mo, L. Ouyang, W. Y. Ching, I. Tanaka, Y. Koyama, and R. Riedel, “Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4,” Physical Review Letters, Vol. 83, pp. 5046 (1999). DOI: 10.1103/PhysRevLett.83.5046 [68]E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, “High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions,” Physical Review B, Vol. 51, 12149 (1995). DOI: 10.1103/PhysRevB.51.12149 [69]J. Z. Zhao and C. Z. Fan, “First-principles study on hardness of five polymorphs of C3N4,” Physica B: Condensed Matter, Vol. 403(10-11), pp. 1956-1959 (2008). DOI: 10.1016/j.physb.2007.10.259
|