跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾郁元
研究生(外文):Yu-Yuan Zeng
論文名稱:以有機金屬化學氣相沉積之氧化鎵鋅薄膜於深紫外光發光二極體光電特性之研究
論文名稱(外文):Investigations of Zn-Incorporated β-Ga2O3films grown by MOCVD on the optoelectronic properties of deep- ultraviolet light emitting diodes
指導教授:洪瑞華蔡政穆
口試委員:張守進武東星
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:有機金屬化學氣相沉積氧化鎵鋅深紫外光發光二極體
外文關鍵詞:MOCVDZnGa2O4Deep UV-LEDs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用有機金屬化學氣相沉積系統成長氧化鋅鎵(ZnGa2O4)薄膜於銦錫氧化物(ITO)薄膜上,作為深紫外發光二極體(Deep UV-LEDs)之歐姆接觸層與透明導電膜,藉以改善深紫外發光二極體之光電特性。
ZnGa2O4薄膜選擇流量部分,本實驗嘗試了五種DEZn的流量,分別為10、30、40、50、60 sccm。隨著DEZn流量的增加,其X光繞射峰逐漸由氧化鎵之晶相逐漸轉變為ZnGa2O4,在流量為10 sccm時以形成鋅摻雜的氧化鎵為主,當流量提升至30 sccm時開始轉變為氧化鎵鋅,而晶粒大小則隨著流量增加從146Å變大至233Å。此外,在波長為280 nm時,ZnGa2O4薄膜具有相當良好的穿透率約93.2%。
本論文設計3種不同形貌的歐姆接觸層結構(Dot、Hole、Whole)之水平Deep UV-LEDs (Dot-LED、Hole-LED及Whole-LED),以及ZnGa2O4薄膜之水平Deep UV-LED (Z-LED)和ITO薄膜之水平Deep UV-LED (C-LED)進行探討與比較。其中,ZnGa2O4薄膜無法直接與p+-GaN形成歐姆接觸,使Z-LED無元件特性。另一方面,Hole-LED則因為ZnGa2O4薄膜延伸至p-AlGaN,造成元件阻抗較高,使得光電特性較差。此外,分別製作半徑為25 µm (R25)和50 µm (R50)不同尺寸的Dot-ITO之Dot-LED進行比較,可發現R50Dot-LED的外部量子效率較R25Dot-LED提升43.4%。在注入電流200 mA下,Dot-LED與Whole-LED之光輸出功率較C-LED提升33.7%和12.3%。在外部量子效率方面,Dot-LED與Whole-LED較C-LED分別提升34.2%和12.9%。這些結果清楚地表明,ZnGa2O4/ITO-Dot和ZnGa2O4/ITO-whole接觸層結構可以作為Deep UV-LEDs的透明導電膜,進而增加發光亮度。
In this thesis, the ZnGa2O4 films were grown on ITO layer by metalorganic chemical vapor deposition using Diethylzinc (DEZn), Triethylgallium (TEGa), and oxygen sources. The ZnGa2O4/ITO films were employed as an ohmic contact layer and a transparent conductive layer for the deep-ultraviolet light-emitting diodes (DUV-LEDs) to improve optoelectronic characteristics of LEDs.
Based on the ZnGa2O4 films experiment results, the X-ray diffraction peak shifts to the lower angle with increasing DEZn flow rate, which indicated that the film transferred from β-Ga2O3 into ZnGa2O4. From the transmittance spectra, the ZnGa2O4 films exhibited high transparency above 92% at wavelength of 280 nm.
Three kinds of different ohmic-contact-layer shapes (Dot, Hole and Whole) of the DUV-LEDs (dot-LED, hole-LED and whole-LED), and the ZnGa2O4/DUV-LED (Z-LED), and the ITO/DUV-LED (C-LED) were fabricated and discussed. In addition, Z-LED has no device characteristics because of the ZnGa2O4 film cannot form ohmic contact to p+-GaN layer. For Hole-LEDs, since the ZnGa2O4 film extends to p-AlGaN layer, resulting in high resistance and poor optoelectronic properties. In addition, Dot-ITO film with different radiuses of 25 μm (R25) and 50 μm (R50) were prepared. It can be find that the R50Dot-LED exhibited a 43.4% enhancement in external quantum efficiency (EQE) compared with the R25Dot-LED. At an injection current of 200 mA, the Dot-LED and Whole-LED exhibited 33.7% and 12.3% enhancement in light output power, respectively, as compared with that of the C-LED. The EQEs of the Dot-LED and Whole-LED had 34.2% and 12.9% improvement compared to that of the C-LED. These results clearly indicate that the ZnGa2O4/ITO-Dot and ZnGa2O4/ITO-whole- contact-layer structure can be used as a TCL for DUV-LEDs to increase the light output.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1前言 1
1-2研究動機 3
1-3 論文架構 4
第二章 理論基礎 5
2-1發光二極體發光理論 5
2-2金屬-半導體接面理論 5
2-2-1蕭特基接觸原理 6
2-2-2 歐姆接觸之原理 6
2-3薄膜材料性質及應用 7
2-3-1 氧化鎵 7
2-3-2 氧化鎵鋅 9
2-4光電特性 10
2-5發光二極體發光效率原理 11
2-5-1 內部量子效率Internal quantum efficiency(IQE) 12
2-5-2 光萃取效率(Extraction efficiency)及外部量子效率External Quantum Efficiency (EQE) 12
2-6 發光二極體的基本特性參數 15
2-6-1 正向偏壓 (forward voltage,Vf) 15
2-6-2 漏電流 (leakage current,Ir) 15
2-6-3 光強度(Luminance Intensity, I) 15
2-6-4 輸出光功率 (output power) 16
2-6-5 光電轉換效率 wall plug efficiency (WPE) 16
第三章 實驗步驟 17
3-1前言 17
3-2深紫外光氮化鎵試片之磊晶結構 17
3-3 薄膜備製 18
3-3-1試片清洗 18
3-3-2沉積氧化銦錫 18
3-3-3氧化鎵鋅薄膜成長 20
3-4 ZnGa2O4 DUV LED元件製作 21
3-4-1 試片清洗 21
3-4-2定義元件範圍 21
3-4-3 電極製作 22
3-4-4 元件切割 22
3-3 量測元件特性 24
3-3-1 光電特性量測 24
3-3-2 積分球量測系統 24
3-3-3 Alpha-Step量測系統 25
3-3-6 N&K光學量測系統 25
3-3-4 IR紅外熱像分析儀簡介 26
3-3-4輝光放電分光儀(GDS) 27
3-3-5掃描式顯微鏡原理簡介 27
3-3-6 CL分析技術原理 28
3-3-7原子力顯微鏡原理 28
3-3-8光致螢光光譜儀量測系統 29
3-3-9X射線繞射分析儀 (XRD) 30
3-3-10霍爾效應分析儀(Hall Effect Analyzer) 32
3-3-11 X射線光電子能譜學(XPS) 33
第四章結果與討論 35
4-1 Zn摻雜濃度對氧化鎵磊晶薄膜特性之探討 35
4-1-1 不同Zn摻雜濃度對磊晶薄膜結晶特性及元素組成 35
4-1-2不同Zn摻雜濃度電性之影響 41
4-2 ZnGa2O4(透明導電層)與ITO(歐姆接觸層)之薄膜分析 42
4-2-1 ZGO(透明導電層)/ITO(歐姆接觸層)對於深紫外光之穿透率 42
4-3-2 ITO與p+GaN之歐姆接觸 44
4-3-3 ZGO(透明導電層)/ITO(歐姆接觸層)電性之影響 46
4-2-4 不同結構的歐姆接觸層對於深紫外光之穿透率與樣貌 48
4-2-5不同構造歐姆接觸與氧化鋅鎵薄膜結晶特性 51
4-2-6 金屬與ZnGa2O4之歐姆接觸 52
4-3元件樣貌 53
4-4陰極發光與光致螢光分析量測 54
4-5不同樣貌之歐姆接觸層UVLEDs元件之光電特性 56
4-5-1元件之電流-電壓特性 56
4-5-2光輸出功率分析 57
4-5-3 元件之光電轉換效率及外部量子效率 60
4-5-4紅外線熱影像分析 62
4-6不同Dot-ITO尺寸之UVLEDs元件光電特性 64
4-6-1元件電流-電壓特性 64
4-6-2元件之光輸出功率及電光轉換效率 65
第五章 結論與未來展望 68
參考文獻 69
[1]呂紹旭,光運雙月刊2012年1月,No 97。
[2]許世傑,科學月刊2014年3月27日。
[3]L. Chuang , “Optical Gain of strained wurtziteGaN quantum-well lasers,”IEEE J.Quantum Electron.,32,1791(1996)
[4]E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press. Oxford (1998)
[5]S. M. Sze, Semiconductor Device Physics and Technology, pp.160 (1985)
[6]A. Schmitz, A Ping, M. Khan,Q. chen,J. Yang, and I.Adesida, “Metal contacts to n-type GaN”,Journal of Electronic Materials, vol.27,pp.255-260,(1998)
[7]R. Roy, V. G. Hill, E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3-H2O”, Journal of the America Ceramic Society, vol. 74, pp. 719-722 (1952)
[8]S. Geller, “Crystal structure of β- Ga2O3”, The Journal of Chemical Physics, vol. 33, pp. 676-684 (1990).
[9]E. G. Villora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, T. Fukuda, “Optical spectroscopy study on β- Ga2O3”, Japanese Journal of Applied Physics, vol. 41, pp. 622-625 (2002).
[10]M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Electrical conductivity control in transparent p-type (LaO)CuS thin films prepared by rf sputtering”, Thin Solid Films, vol. 411, pp. 134 (2002).
[11]Z. Yu, C. D. Overgaard, R. Droopad, M. Passlack and J. K. Abrokwah, “Growth and physical properties of Ga2O3 thin films on GaAs(001) substrate by molecular-beam epitaxy” Applied Physics Letter. vol. 82, pp. 2978 (2003).
[12]H. W. Kim, N. H. Kim, “Annealing effects on the properties of Ga2O3 thin films
grown on sapphire by MOCVD”, Applied Surface Science, vol. 230, pp. 301 (2004).
[13]Z. Li, C. de Groot, J. H. Moodera, “Gallium oxide as an insulating barrier for spin-dependent tunneling junctions”, Applied Surface Science. vol. 77, pp. 3630-3632 (2000).
[14]M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, “Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistorson β-Ga2O3 (010) substrates and temperature dependence of their device characteristics”, Applied Physics Letter, vol. 103, pp. 123511 (2013).
[15]P. Feng, J. Y. Zhang, Q. H. Li, T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors”, Applied Physics Letter, vol. 88, pp. 153107(2006).
[16]A. R. Phani, S. Santucci, S. Di Nardo, L. Lozzi, M. Passacantando, P. Picozzi, “Preparation and characterization of bulk ZnGa2O4”, Journal of Materials Science, vol. 33, pp. 3969-3973 (1998).
[17]M. Vasile, C. Ianasi, A. –V. Birdeanu, E. Vasile, “Structural properties of undoped and doped with Er3+ ions ZnGa2O4 nanomaterials obtained by hydrothermal method”, Journal of Optoelectronic and Advanced Materials, vol. 13, no. 10, pp. 1273-1278 (2011).
[18]B. Qiao, Z. L. Tang, Z. T. Zhang, L. Chen, “Study on ZnGa2O4:Cr3+ a.c. powder electroluminescent device”, Materials Letters, vol. 61, pp. 401-404 (2007).
[19]S. M. Chung, S. H. Hanb, Y. J. Kimb, “Characterization of compositional variation and luminescence of ZnGa2O4:Mn thin film phosphor” Materials Letters, vol. 59, pp. 786-789 (2005).
[20]R. Roy, V. G. Hill, E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3-H2O”, Journal of the America Ceramic Society, vol. 74, pp. 719-722 (1952).
[21]K. Matsuzaki, H. Hiramatsu , K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor”, Thin Solid Films, vol. 496, pp. 37–41 (2006).
[22]中國藝術網,尖晶石結構與尖晶石硬度你了解多少?, (2015)。
[23]林子豪,長庚大學碩士論文, (2005)。
[24]施敏 原著,張俊彥 翻著,半導體元件物理與製程技術,第三版,高立圖書有限公司,台北,台灣,pp192-206,2000
[25]E. Letts, T. Hashimoto, M. Ikari, and Y. Nojima, “Development of GaN wafers for solid-state lighting via the ammonothermal method”, Journal of Crystal Growth,vol.350,pp-66-68,jul 2012.
[26]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, "Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes," Electronics Letters, vol. 32, pp. 132-134, 1996.
[27]12V. M. Bermudez, "Study of oxygen chemisorption on the GaN(0001)-(1x1) surface," Journal of Applied Physics, vol. 80, pp. 1190-1200, Jul 1996.
[28]Z. L. Li, X. D. Hu, C. Ke, R. J. Nie, X. H. Luo, X. P. Zhang, T. J. Yu, B. Zhang, C. Song, Z. J. Yang, Z. Z. Chen, and G. Y. Zhang, "Preparation of GaN-based cross-sectional TEM specimens by laser lift-off," Micron, vol. 36, pp. 281-284, 2005.

[29]史光國 著,半導體發光二極體及固體照明,全華圖書股份有限公司,台灣,pp.10-82,2010。
[30]P. N. Arne Roos, P. Nostell, D. Ronnow and A. Roos, “Single-beam integrating sphere spectrophotometer for reflectance andstransmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples”, Rev. Sci. Instrum, vol. 70, p. 2481, 1999.
[31]陳隆建,發光二極體之原理與製程,台灣,2006。
[32]R.H. Horng, K.C. Shen, Y.W. Kuo and D.S. Wuu, "Effects of Cell Distance on the Performance of GaN High-Voltage Light Emitting Diodes," ECS Solid State Letters, vol. 1, pp. 21-23, 2012.
[33]P. N. Arne Roos, P. Nostell, D. Ronnow and A. Roos, “Single-beam integrating sphere spectrophotometer for reflectance andstransmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples”, Rev. Sci. Instrum, vol. 70p. 2481, 1999.
[34]T. Ding, A. P. J. Middelberg, T. Huber and R. J. Falconer,“Far-infrared spectroscopy analysis of linear, cyclic peptides, and lysozyme”, Vib. Spectrosc, vol. 61, pp. 144-150, 2012.
[35]黃英碩,科儀新知第二十六卷第四期,94.2 , 2008。
[36]陳隆建 著,發光二極體之原理與製程,台灣,2006。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊