跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅智雍
研究生(外文):Chih-Yung Fu
論文名稱:氮化鎵/石墨烯/矽異質結構界面能之第一原理研究
論文名稱(外文):Ab-initio Study of Interface Energy of GaN(0001)/Graphene/Si(111) Heterostructures
指導教授:劉柏良劉柏良引用關係
指導教授(外文):Po-Liang Liu
口試委員:李明憲洪銘聰
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:第一原理氮化鎵石墨烯界面能價帶偏移
外文關鍵詞:first-principlesGaNSiGrapheneinterface energyvalence band offsets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以基於密度泛函理論(Density functional theory, DFT)的第一原理(First-principles)計算研究烏采結構氮化鎵薄膜異質磊晶成長於面心立方結構矽基板並使用石墨烯做為緩衝層的異質界面之界面能,並透過分析GaN(0001)/Graphene/Si(111)最穩定異質接面模型以研究氮化鎵薄膜在界面處之原子排列。在GaN(0001)/Graphene/Si(111)異質介面之介面能研究中,最穩定界面結構鍵結為N-C鍵且在N-rich化學氣氛下之N-polar 氮化鎵磊晶成長在Graphene/Si(111)上有最低的雙界面能3.161 eV/Å2。在GaN/Graphene/Si(111)異質界面之能帶偏移研究中,最穩定界面與雙界面能研究一致,能帶偏移計算結果得出GaN/Graphene界面最低值為6.53 eV,而Graphene/Si界面最低值為4.78 eV,顯示N-C鍵結為GaN(0001)/Graphene/Si(111)鍵結時的適合鍵結。
The interface structure and energy of wurtzite GaN(0001) epitaxially grown on fcc Si(111) using Graphene as a buffer layer was investigated with the assistance from first-principles calculations. Furthermore, the atomic arrangement at the heterointerfaces og GaN/Graphene/Si was deduced from the computational calculation as well. The results indicated that the minimal energy at 3.161 eV/Å2 was observed when N-polar GaN was grown on Graphene-buffered Si substrate under N-rich ambient. Meanwile, the N-C bonds were present in this stable heterointerface.The band offset calculation revealed that the lowest interface energy of GaN/Graphene and Graphene/Si were 6.53 eV and 4.78 eV, respectively. This result agrees with the previous work that successfully grew epitaxial GaN on Si substrate with Graphene buffer layer by metal organic chemical vapor deposition.
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 2
第二章 背景介紹與文獻回顧 5
2.1 前言 5
2.2氮化鎵晶體結構與氮化鎵半導體材料特性介紹 5
2.3石墨烯晶體結構與矽基板之材料特性介紹 6
2.4 界面能相關研究之文獻回顧 7
2.5 能帶偏移理論相關研究之文獻回顧 8
第三章 計算方法 10
3.1 前言 10
3.2 Hohenberg-Kohn Theorem 11
3.3 Kohn-Sham Equation 12
3.4 Local Density Approximation (LDA) 13
3.5 Generalized Gradient Approximation (GGA) 14
3.6 膺勢 15
3.7 界面能公式 16
3.8 自洽場計算(Self-consistent field method) 17
3.9 Band offsets理論與計算方法 18
第四章 氮化鎵/石墨烯/矽異質界面結構 24
4.1 前言 24
4.2 計算設定與模型建構 24
4.3 結果與討論 26
4.3.1 氮化鎵表面能研究 26
4.3.2 GaN(0001)/Graphene/Si(111)異質界面之雙界面能研究 26
4.4 結論 27
第五章 氮化鎵/石墨烯/矽異質結構之價帶偏移研究 34
5.1 前言 34
5.2 計算方法 34
5.3 結果與討論 35
5.3.1 氮化鎵塊材、石墨烯塊材與矽塊材結構 35
5.3.2 GaN/Graphene/Si宏觀平均位勢與價帶偏移 36
5.4 結論 36
第六章 總結論 44
參考文獻 45
[1]A. D. Almeida and B. Santos, “Solid state lighting review – Potential and challenges in Europe,” Renewable and Sustainable Energy Reviews, Vol. 34, pp. 30-48 (2014). DOI: 10.1016/j.rser.2014.02.029
[2]A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasiparticle band structure of AlN and GaN,” Physical Review B, Vol. 48, No.16, pp.11810-11816 (1993). DOI: 10.1103/PhysRevB.48.11810
[3]I. Vurgaftman, J. R. Meyerl, and R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, Vol. 89, No.11, pp. 5815-5875 (2001). DOI: 10.1063/1.1368156
[4]E. V. Etzkorn and D. R. Clarke, “Cracking of GaN films,” Journal of Applied Physics, Vol. 89, No.2 pp. 1025-1034 (2001). DOI: 10.1063/1.1330243
[5]D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Reports on Progress in Physics, Vol. 76, No. 106501, pp. 1-31 (2013). DOI: 10.1088/0034-4885/76/10/106501
[6]M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire,” Applied Physics Letters, Vol. 81, No.3, pp. 469-471 (2002). DOI: 10.1063/1.1493220
[7]M. Heilmann, A. M. Munshi, and G. Sarau, “Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer,” Nano Letters, Vol. 16, No.6 pp. 3524−3532 (2016). DOI: 10.1021/acs.nanolett.6b00484
[8]C. Tayran, Z. Zhu, and M. Baldoni, “Optimizing Electronic Structure and Quantum Transport at the Graphene-Si(111) Interface: An Ab Initio Density-Functional Study,” Physical Review Letters, Vol. 110, No.17, pp. 176805-1-176805-5 (2013). DOI: 10.1103/PhysRevLett.110.176805
[9]T. Araki, S. Uchimura, and J. Sakaguchi, “Radio-frequency plasma-excited molecular beam epitaxy growth of GaN on Graphene/Si(100) substrates,” Applied Physics Express, Vol. 7, No.7, pp. 071001-1-071001-3 (2014). DOI: 10.7567/APEX.7.071001
[10]S. Kang and A. Manda, “Ultraviolet photoconductive devices with an n-GaN nanorodGraphene hybrid structure synthesized by metal-organic chemical vapor deposition,” Scientific Reports, Vol. 5, No. 10808, pp. 1-11 (2015). DOI: 10.1038/srep10808
[11]R. Koester, J. S. Hwang, C. Durand, D. L. S. Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy,” Nanotechnology, Vol. 21, No.1, pp. 1-9 (2010). DOI: 10.1088/0957-4484/21/1/015602
[12]D. Salomon, A. Dussaigne, M. Lafossas, and C. Durand, “Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications,” Nanoscale Research Letters, Vol. 8, No. 61, pp.1-5 (2013). DOI: 10.1186/1556-276X-8-61
[13]P. Schlotter, R. Schmidt, and J. Schneider, “ Luminescence conversion of blue light emitting diodes,” Journal of Applied Physics A, Vol. 64, No.4, pp. 417-418 (1997). DOI: 10.1007/s003390050498
[14]H. P. Maruska and J. J. Tietjen, “The Preparation and Properties of Vapordeposited Singlecrystalline GaN,” Applied Physics Letters, Vol. 15, No.10, pp. 327-329 (1969). DOI: 10.1063/1.1652845
[15]M. B. Mclaurin, A. Hirai, E. Young, F. Wu, and J. S. Speck” Basal Plane Stacking-Fault Related Anisotropy in X-ray Rocking Curve Widths of m-Plane GaN,” Japanese Journal of Applied Physics, Vol. 47, No. 7, pp. 5429–5431(2008). DOI: 10.1143/JJAP.47.5429
[16]H. Sekiguchi, T. Nakazato, and A. Kikuchi, “Structural and optical properties of GaN nanocolumns grown on (0001)sapphire substrates by rf-plasma-assisted molecular-beam epitaxy,” Journal of Crystal Growth, Vol. 300, No.1, pp. 259-262 (2007). DOI: 10.1016/j.jcrysgro.2006.11.036
[17]Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, and Q. K. Xue, “Surface and Interface Studies of GaN Epitaxy on Si(111) via ZrB2 Buffer Layers,” Physical Review Letters, Vol. 95, No.26, pp. 266105 (2005). DOI: 10.1103/PhysRevLett.95.266105
[18]P. L. Liu, “Highly Strained Metastable Heterojunction between Wurtzite GaN(0001) and Cubic CrN(111),” Journal of The Electrochemical Society, Vol. 157, No. 11, pp. D577-D581 (2010). DOI: 10.1149/1.3489369
[19]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Applied Physics, Vol. 31, No.11, pp. 1273-1299 (1998). DOI: 10.1088/0022-3727/31/11/002
[20]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, No.3, pp. B864-B871 (1964). DOI: 10.1103/PhysRev.136.B864
[21]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, No.4, pp. A1133-A1138 (1965). DOI: 10.1103/PhysRev.140.A1133
[22]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33,No.12, pp. 8800-8802 (1986). DOI: 10.1103/PhysRevB.33.8800
[23]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, No.11, pp. 6671-6687 (1992). DOI: 10.1103/PhysRevB.46.6671
[24]J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No.18, pp. 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865
[25]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for Ab-initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, No.4, pp. 1045-1097 (1992). DOI:10.1103/RevModPhys.64.1045
[26]G. Kresse and J. Furthmüller, “Efficient iterative schemes for Ab-initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, No.16, pp. 11169-11186 (1996). DOI: 10.1103/PhysRevB.54.11169
[27]G. Kresse and J. Furthmüller, “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, No.1, pp. 15-50 (1996). DOI: 10.1016/0927-0256(96)00008-0
[28]G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, No. 40, pp. 8245-8257 (1994). DOI: 10.1088/0953-8984/6/40/015
[29]X. Dang, H. Dong, L. Wang, Y. Zhao, Z. Guo, T. Hou, and Y. Li,” Semiconducting Graphene on Silicon from First-Principles Calculations,” ACS Nano, Vol. 9, No. 8, pp. 8562–8568, (2015). DOI: 10.1021/acsnano.5b03722
[30]V. Timon, S. Brand, S. J. Clark, and R. A. Abram, “Ab-initio studies of strained wurtzite GaN surfaces,” Journal of Physics Condensed Matter, Vol. 16, No.4, pp. 531-542 (2004). DOI: 10.1088/0953-8984/16/4/002
[31]A. Ishii, T. Tatani, H. Asano, and K. Nakada, “Computational study for growth of GaN on graphite as 3D growth on 2D material,” physica status solidi (c), Vol. 7, No. 2, pp. 347-350 (2010). DOI: 10.1002/pssc.200982430
[32]E. P. Wang, J. M. Bian, F. W. Qin, D. Zhang, Y. M. Liu, Y. Zhao, Z. W. Duan, and S. Wang, “Effect of TMGa flux on GaN films deposited on Ti coated on glass substrates at low temperature,” Condensed Matter Physics, Vol. 58, No. 30, pp. 3617-3623 (2013). DOI: 10.1007/s11434-013-6027-4
[33]J. M. Bian, L. Miao, F. Qin, Z. Dong, W. Liu, and H. Liu, “Low-temperature ECR-PEMOCVD deposition of high-quality crystalline gallium nitride films: A comparative study of intermediate layers for growth on amorphous glass substrates,” Materials Science in Semiconductor Processing, Vol. 26, pp. 182-186 (2014). DOI: 10.1016/j.mssp.2014.04.030
[34]C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, “Band offsets in cubic GaN/AlN superlattices,” Physical Review B, Vol. 83, No. 19, pp. 195301-1-195301-10 (2011). DOI: 10.1103/PhysRevB.83.195301
[35]T. Watanabe, K. Ito, S. Tsukimoto, Y. Ushida, M. Moriyama, N. Shibata, and M. Murakami, “Growth of GaN on Nitriding TiN buffer layers,” Materials Transactions, Vol. 46, No.9, pp. 1975-1978 (2005). DOI: 10.2320/matertrans.46.1975
[36]J. Bourne and R. L. Jacobs, “The band structure of GaN,” Journal of Physics C Solid State Physics, Vol. 5, No. 24, pp. 3462-3468 (1972). DOI: 10.1088/0022-3719/5/24/008
[37]P. G. Moses, M. Miao, Q. Yan, and C. G. V. D. Walle, “Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN,” The Journal of Chemical Physics, Vol. 134, pp. 084703, (2011). DOI: 10.1063/1.3548872
[38]I. N. Yakovkin, “Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2,” Crystals, Vol. 6, No.134, pp. 1-13 (2016). DOI: 10.3390/cryst6110143
[39]M. Rohlfing, P. Kriiger, and J. Pollmann, “Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets,” Physical Review B, Vol. 48, No. 24 pp. 17791-17805 (1993). DOI: 10.1103/PhysRevB.48.17791
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊