|
[1]A. D. Almeida and B. Santos, “Solid state lighting review – Potential and challenges in Europe,” Renewable and Sustainable Energy Reviews, Vol. 34, pp. 30-48 (2014). DOI: 10.1016/j.rser.2014.02.029 [2]A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasiparticle band structure of AlN and GaN,” Physical Review B, Vol. 48, No.16, pp.11810-11816 (1993). DOI: 10.1103/PhysRevB.48.11810 [3]I. Vurgaftman, J. R. Meyerl, and R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, Vol. 89, No.11, pp. 5815-5875 (2001). DOI: 10.1063/1.1368156 [4]E. V. Etzkorn and D. R. Clarke, “Cracking of GaN films,” Journal of Applied Physics, Vol. 89, No.2 pp. 1025-1034 (2001). DOI: 10.1063/1.1330243 [5]D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Reports on Progress in Physics, Vol. 76, No. 106501, pp. 1-31 (2013). DOI: 10.1088/0034-4885/76/10/106501 [6]M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire,” Applied Physics Letters, Vol. 81, No.3, pp. 469-471 (2002). DOI: 10.1063/1.1493220 [7]M. Heilmann, A. M. Munshi, and G. Sarau, “Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer,” Nano Letters, Vol. 16, No.6 pp. 3524−3532 (2016). DOI: 10.1021/acs.nanolett.6b00484 [8]C. Tayran, Z. Zhu, and M. Baldoni, “Optimizing Electronic Structure and Quantum Transport at the Graphene-Si(111) Interface: An Ab Initio Density-Functional Study,” Physical Review Letters, Vol. 110, No.17, pp. 176805-1-176805-5 (2013). DOI: 10.1103/PhysRevLett.110.176805 [9]T. Araki, S. Uchimura, and J. Sakaguchi, “Radio-frequency plasma-excited molecular beam epitaxy growth of GaN on Graphene/Si(100) substrates,” Applied Physics Express, Vol. 7, No.7, pp. 071001-1-071001-3 (2014). DOI: 10.7567/APEX.7.071001 [10]S. Kang and A. Manda, “Ultraviolet photoconductive devices with an n-GaN nanorodGraphene hybrid structure synthesized by metal-organic chemical vapor deposition,” Scientific Reports, Vol. 5, No. 10808, pp. 1-11 (2015). DOI: 10.1038/srep10808 [11]R. Koester, J. S. Hwang, C. Durand, D. L. S. Dang, and J. Eymery, “Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy,” Nanotechnology, Vol. 21, No.1, pp. 1-9 (2010). DOI: 10.1088/0957-4484/21/1/015602 [12]D. Salomon, A. Dussaigne, M. Lafossas, and C. Durand, “Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications,” Nanoscale Research Letters, Vol. 8, No. 61, pp.1-5 (2013). DOI: 10.1186/1556-276X-8-61 [13]P. Schlotter, R. Schmidt, and J. Schneider, “ Luminescence conversion of blue light emitting diodes,” Journal of Applied Physics A, Vol. 64, No.4, pp. 417-418 (1997). DOI: 10.1007/s003390050498 [14]H. P. Maruska and J. J. Tietjen, “The Preparation and Properties of Vapordeposited Singlecrystalline GaN,” Applied Physics Letters, Vol. 15, No.10, pp. 327-329 (1969). DOI: 10.1063/1.1652845 [15]M. B. Mclaurin, A. Hirai, E. Young, F. Wu, and J. S. Speck” Basal Plane Stacking-Fault Related Anisotropy in X-ray Rocking Curve Widths of m-Plane GaN,” Japanese Journal of Applied Physics, Vol. 47, No. 7, pp. 5429–5431(2008). DOI: 10.1143/JJAP.47.5429 [16]H. Sekiguchi, T. Nakazato, and A. Kikuchi, “Structural and optical properties of GaN nanocolumns grown on (0001)sapphire substrates by rf-plasma-assisted molecular-beam epitaxy,” Journal of Crystal Growth, Vol. 300, No.1, pp. 259-262 (2007). DOI: 10.1016/j.jcrysgro.2006.11.036 [17]Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, and Q. K. Xue, “Surface and Interface Studies of GaN Epitaxy on Si(111) via ZrB2 Buffer Layers,” Physical Review Letters, Vol. 95, No.26, pp. 266105 (2005). DOI: 10.1103/PhysRevLett.95.266105 [18]P. L. Liu, “Highly Strained Metastable Heterojunction between Wurtzite GaN(0001) and Cubic CrN(111),” Journal of The Electrochemical Society, Vol. 157, No. 11, pp. D577-D581 (2010). DOI: 10.1149/1.3489369 [19]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Applied Physics, Vol. 31, No.11, pp. 1273-1299 (1998). DOI: 10.1088/0022-3727/31/11/002 [20]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, No.3, pp. B864-B871 (1964). DOI: 10.1103/PhysRev.136.B864 [21]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, No.4, pp. A1133-A1138 (1965). DOI: 10.1103/PhysRev.140.A1133 [22]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33,No.12, pp. 8800-8802 (1986). DOI: 10.1103/PhysRevB.33.8800 [23]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, No.11, pp. 6671-6687 (1992). DOI: 10.1103/PhysRevB.46.6671 [24]J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No.18, pp. 3865-3868 (1996). DOI: 10.1103/PhysRevLett.77.3865 [25]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for Ab-initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, No.4, pp. 1045-1097 (1992). DOI:10.1103/RevModPhys.64.1045 [26]G. Kresse and J. Furthmüller, “Efficient iterative schemes for Ab-initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, No.16, pp. 11169-11186 (1996). DOI: 10.1103/PhysRevB.54.11169 [27]G. Kresse and J. Furthmüller, “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, No.1, pp. 15-50 (1996). DOI: 10.1016/0927-0256(96)00008-0 [28]G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, No. 40, pp. 8245-8257 (1994). DOI: 10.1088/0953-8984/6/40/015 [29]X. Dang, H. Dong, L. Wang, Y. Zhao, Z. Guo, T. Hou, and Y. Li,” Semiconducting Graphene on Silicon from First-Principles Calculations,” ACS Nano, Vol. 9, No. 8, pp. 8562–8568, (2015). DOI: 10.1021/acsnano.5b03722 [30]V. Timon, S. Brand, S. J. Clark, and R. A. Abram, “Ab-initio studies of strained wurtzite GaN surfaces,” Journal of Physics Condensed Matter, Vol. 16, No.4, pp. 531-542 (2004). DOI: 10.1088/0953-8984/16/4/002 [31]A. Ishii, T. Tatani, H. Asano, and K. Nakada, “Computational study for growth of GaN on graphite as 3D growth on 2D material,” physica status solidi (c), Vol. 7, No. 2, pp. 347-350 (2010). DOI: 10.1002/pssc.200982430 [32]E. P. Wang, J. M. Bian, F. W. Qin, D. Zhang, Y. M. Liu, Y. Zhao, Z. W. Duan, and S. Wang, “Effect of TMGa flux on GaN films deposited on Ti coated on glass substrates at low temperature,” Condensed Matter Physics, Vol. 58, No. 30, pp. 3617-3623 (2013). DOI: 10.1007/s11434-013-6027-4 [33]J. M. Bian, L. Miao, F. Qin, Z. Dong, W. Liu, and H. Liu, “Low-temperature ECR-PEMOCVD deposition of high-quality crystalline gallium nitride films: A comparative study of intermediate layers for growth on amorphous glass substrates,” Materials Science in Semiconductor Processing, Vol. 26, pp. 182-186 (2014). DOI: 10.1016/j.mssp.2014.04.030 [34]C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, “Band offsets in cubic GaN/AlN superlattices,” Physical Review B, Vol. 83, No. 19, pp. 195301-1-195301-10 (2011). DOI: 10.1103/PhysRevB.83.195301 [35]T. Watanabe, K. Ito, S. Tsukimoto, Y. Ushida, M. Moriyama, N. Shibata, and M. Murakami, “Growth of GaN on Nitriding TiN buffer layers,” Materials Transactions, Vol. 46, No.9, pp. 1975-1978 (2005). DOI: 10.2320/matertrans.46.1975 [36]J. Bourne and R. L. Jacobs, “The band structure of GaN,” Journal of Physics C Solid State Physics, Vol. 5, No. 24, pp. 3462-3468 (1972). DOI: 10.1088/0022-3719/5/24/008 [37]P. G. Moses, M. Miao, Q. Yan, and C. G. V. D. Walle, “Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN,” The Journal of Chemical Physics, Vol. 134, pp. 084703, (2011). DOI: 10.1063/1.3548872 [38]I. N. Yakovkin, “Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2,” Crystals, Vol. 6, No.134, pp. 1-13 (2016). DOI: 10.3390/cryst6110143 [39]M. Rohlfing, P. Kriiger, and J. Pollmann, “Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets,” Physical Review B, Vol. 48, No. 24 pp. 17791-17805 (1993). DOI: 10.1103/PhysRevB.48.17791
|