|
[1]Y. Wang, J. Roller, M. D. Menger, and H. Thorlacius, "Sepsis-induced leukocyte adhesion in the pulmonary microvasculature in vivo is mediated by CD11a and CD11b," European journal of pharmacology, vol. 702, pp. 135-141, 2013. [2]G. Disibio and S. W. French, "Metastatic patterns of cancers: results from a large autopsy study," Archives of pathology & laboratory medicine, vol. 132, pp. 931-939, 2008. [3]P. Guo, B. Cai, M. Lei, Y. Liu, and B. M. Fu, "Differential arrest and adhesion of tumor cells and microbeads in the microvasculature," Biomechanics and modeling in mechanobiology, vol. 13, pp. 537-550, 2014. [4]J. Folkman and M. Hochberg, "Self-regulation of growth in three dimensions," J Exp Med, vol. 138, pp. 745-53, Oct 1 1973. [5]S. F. Barreto-Ortiz, S. Zhang, M. Davenport, J. Fradkin, B. Ginn, H.-Q. Mao, et al., "A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature," PloS one, vol. 8, p. e81061, 2013. [6]C. Franco and H. Gerhardt, "Tissue engineering: Blood vessels on a chip," Nature, vol. 488, pp. 465-6, Aug 23 2012. [7]M. I. Bogorad, J. DeStefano, J. Karlsson, A. D. Wong, S. Gerecht, and P. C. Searson, "Review: in vitro microvessel models," Lab on a Chip, vol. 15, pp. 4242-4255, 2015. [8]Y. Zheng, J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, et al., "In vitro microvessels for the study of angiogenesis and thrombosis," Proc Natl Acad Sci U S A, vol. 109, pp. 9342-7, Jun 12 2012. [9]H. Bramfeld, G. Sabra, V. Centis, and P. Vermette, "Scaffold vascularization: a challenge for three-dimensional tissue engineering," Current medicinal chemistry, vol. 17, pp. 3944-3967, 2010. [10]T. Kucera, J. Eglinger, B. Strilic, and E. Lammert, "Vascular lumen formation from a cell biological perspective," in Novartis Foundation symposium, 2007, p. 46. [11]I. Sukmana, "Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct," ScientificWorldJournal, vol. 2012, p. 201352, 2012. [12]K. Scheller, I. Dally, N. Hartmann, B. Munst, J. Braspenning, and H. Walles, "Upcyte(R) microvascular endothelial cells repopulate decellularized scaffold," Tissue Eng Part C Methods, vol. 19, pp. 57-67, Jan 2013. [13]K. H. Wong, J. M. Chan, R. D. Kamm, and J. Tien, "Microfluidic models of vascular functions," Annu Rev Biomed Eng, vol. 14, pp. 205-30, 2012. [14]Y. Kim, M. E. Lobatto, T. Kawahara, B. Lee Chung, A. J. Mieszawska, B. L. Sanchez-Gaytan, et al., "Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis," Proc Natl Acad Sci U S A, vol. 111, pp. 1078-83, Jan 21 2014. [15]M. P. Cuchiara, D. J. Gould, M. K. McHale, M. E. Dickinson, and J. L. West, "Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels," Adv Funct Mater, vol. 22, pp. 4511-4518, Nov 7 2012. [16]C. Fidkowski, M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang, "Endothelialized microvasculature based on a biodegradable elastomer," Tissue Eng, vol. 11, pp. 302-9, Jan-Feb 2005. [17]C. Fidkowski, M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang, "Endothelialized microvasculature based on a biodegradable elastomer," Tissue engineering, vol. 11, pp. 302-309, 2005. [18]Y.-T. Tung, C.-C. Chang, J.-C. Ju, and G.-J. Wang, "Fabrication of a reticular poly (lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks," Science and Technology of Advanced Materials, pp. 1-18, 2017. [19]J. R. Hurley, S. Balaji, and D. A. Narmoneva, "Complex temporal regulation of capillary morphogenesis by fibroblasts," Am J Physiol Cell Physiol, vol. 299, pp. C444-53, Aug 2010. [20]X. Ye, L. Lu, M. E. Kolewe, H. Park, B. L. Larson, E. S. Kim, et al., "A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues," Biomaterials, vol. 34, pp. 10007-10015, 2013. [21]J. A. Lopez and Y. Zheng, "Synthetic microvessels," J Thromb Haemost, vol. 11 Suppl 1, pp. 67-74, Jun 2013. [22]Y. Zheng, J. Chen, and J. A. López, "Flow-driven assembly of VWF fibres and webs in in vitro microvessels," Nature communications, vol. 6, 2015. [23]A. D. Wong and P. C. Searson, "Live-cell imaging of invasion and intravasation in an artificial microvessel platform," Cancer Res, vol. 74, pp. 4937-45, Sep 1 2014. [24]G.-J. Wang, K.-H. Ho, S.-h. Hsu, and K.-P. Wang, "Microvessel scaffold with circular microchannels by photoresist melting," Biomedical microdevices, vol. 9, pp. 657-663, 2007. [25]A. R. Pries, D. Schonfeld, P. Gaehtgens, M. F. Kiani, and G. R. Cokelet, "Diameter variability and microvascular flow resistance," Am J Physiol, vol. 272, pp. H2716-25, Jun 1997. [26]A. Sobrino, D. T. Phan, R. Datta, X. Wang, S. J. Hachey, M. Romero-López, et al., "3D microtumors in vitro supported by perfused vascular networks," Scientific Reports, vol. 6, 2016. [27]S. Kim, H. Lee, M. Chung, and N. L. Jeon, "Engineering of functional, perfusable 3D microvascular networks on a chip," Lab Chip, vol. 13, pp. 1489-500, Apr 21 2013. [28]D. T. Phan, X. Wang, B. M. Craver, A. Sobrino, D. Zhao, J. C. Chen, et al., "A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications," Lab on a Chip, 2017. [29]I. Grizzi, H. Garreau, S. Li, and M. Vert, "Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence," Biomaterials, vol. 16, pp. 305-11, Mar 1995. [30]S. Samavedi, P. Vaidya, P. Gaddam, A. R. Whittington, and A. S. Goldstein, "Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues," Biotechnol Bioeng, vol. 111, pp. 2549-59, Dec 2014. [31]H. G. Senel Ayaz, A. Perets, H. Ayaz, K. D. Gilroy, M. Govindaraj, D. Brookstein, et al., "Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering," Biomaterials, vol. 35, pp. 8540-52, Oct 2014. [32]S. R. Son, R. A. Franco, S. H. Bae, Y. K. Min, and B. T. Lee, "Electrospun PLGA/gelatin fibrous tubes for the application of biodegradable intestinal stent in rat model," J Biomed Mater Res B Appl Biomater, vol. 101, pp. 1095-105, Aug 2013. [33]O. Mirdailami, M. Soleimani, R. Dinarvand, M. R. Khoshayand, M. Norouzi, A. Hajarizadeh, et al., "Controlled release of rhEGF and rhbFGF from electrospun scaffolds for skin regeneration," J Biomed Mater Res A, Apr 9 2015. [34]S. Juodkazis, "Writing 3D patterns of microvessels," Int J Nanomedicine, vol. 7, pp. 3701-2, 2012. [35]S. Malathi, P. Nandhakumar, V. Pandiyan, T. J. Webster, and S. Balasubramanian, "Novel PLGA-based nanoparticles for the oral delivery of insulin," Int J Nanomedicine, vol. 10, pp. 2207-18, 2015. [36]R. K. Pirlo, P. Wu, J. Liu, and B. Ringeisen, "PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™," Biotechnology and bioengineering, vol. 109, pp. 262-273, 2012. [37]H.-W. Wang, C.-W. Cheng, C.-W. Li, H.-W. Chang, P.-H. Wu, and G.-J. Wang, "Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation," International Journal of Nanomedicine, vol. 7, p. 1865, 2012. [38]G.-J. Wang, Y.-C. Lin, and S.-h. Hsu, "The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls," Biomedical microdevices, vol. 12, pp. 841-848, 2010. [39]X. S. Wu and N. Wang, "Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation," Journal of Biomaterials Science, Polymer Edition, vol. 12, pp. 21-34, 2001. [40]A. Göpferich, "Mechanisms of polymer degradation and erosion," Biomaterials, vol. 17, pp. 103-114, 1996. [41]A. C. Dumitru, F. M. Espinosa, R. Garcia, G. Foschi, S. Tortorella, F. Valle, et al., "In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer," Nanoscale, vol. 7, pp. 5403-10, Mar 12 2015. [42]C.-C. Chang, J.-Y. Wu, C.-W. Chien, W.-S. Wu, H. Liu, C.-C. Kang, et al., "A fluorescent carbazole derivative: high sensitivity for quadruplex DNA," Analytical chemistry, vol. 75, pp. 6177-6183, 2003. [43]Y. H. Li, Z. D. Wang, W. Wang, C. W. Ding, H. X. Zhang, and J. M. Li, "The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro," Exp Biol Med (Maywood), Apr 14 2015. [44]C. Liu, Y. Huang, M. Pang, Y. Yang, S. Li, L. Liu, et al., "Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds," PloS one, vol. 10, pp. e0117709-e0117709, 2014. [45]Y. C. Shin, J. H. Lee, L. Jin, M. J. Kim, Y. J. Kim, J. K. Hyun, et al., "Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices," J Nanobiotechnology, vol. 13, p. 21, 2015. [46]R. P. F. Lanao, A. M. Jonker, J. G. Wolke, J. A. Jansen, J. C. van Hest, and S. C. Leeuwenburgh, "Physicochemical Properties and Applications of Poly (lactic-co-glycolic acid) for Use in Bone Regeneration," Tissue Engineering Part B: Reviews, vol. 19, pp. 380-390, 2013. [47]L. Lu, C. A. Garcia, and A. G. Mikos, "In vitro degradation of thin poly (DL‐lactic‐co‐glycolic acid) films," Journal of biomedical materials research, vol. 46, pp. 236-244, 1999. [48]J. R. Privratsky and P. J. Newman, "PECAM-1: regulator of endothelial junctional integrity," Cell and tissue research, vol. 355, pp. 607-619, 2014. [49]G. Cao, C. D. O'Brien, Z. Zhou, S. M. Sanders, J. N. Greenbaum, A. Makrigiannakis, et al., "Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration," American Journal of Physiology-Cell Physiology, vol. 282, pp. C1181-C1190, 2002. [50]J. Wu and N. Sheibani, "Modulation of VE‐cadherin and PECAM‐1 mediated cell–cell adhesions by mitogen‐activated protein kinases," Journal of cellular biochemistry, vol. 90, pp. 121-137, 2003. [51]M. Giannotta, M. Trani, and E. Dejana, "VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity," Developmental cell, vol. 26, pp. 441-454, 2013. [52]B. Strilić, T. Kučera, J. Eglinger, M. R. Hughes, K. M. McNagny, S. Tsukita, et al., "The molecular basis of vascular lumen formation in the developing mouse aorta," Developmental cell, vol. 17, pp. 505-515, 2009. [53]C. V. Crosby, P. A. Fleming, W. S. Argraves, M. Corada, L. Zanetta, E. Dejana, et al., "VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly," Blood, vol. 105, pp. 2771-2776, 2005. [54]L. M. Goddard and M. L. Iruela-Arispe, "Cellular and molecular regulation of vascular permeability," Thromb Haemost, vol. 109, pp. 407-415, 2013. [55]M. Leemhuis, C. Van Nostrum, J. Kruijtzer, Z. Zhong, M. Ten Breteler, P. Dijkstra, et al., "Functionalized poly (α-hydroxy acid) s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups," Macromolecules, vol. 39, pp. 3500-3508, 2006. [56]M. Leemhuis, J. A. Kruijtzer, C. F. van Nostrum, and W. E. Hennink, "In vitro hydrolytic degradation of hydroxyl-functionalized poly (α-hydroxy acid) s," Biomacromolecules, vol. 8, pp. 2943-2949, 2007. [57]F. Alexis, "Factors affecting the degradation and drug‐release mechanism of poly (lactic acid) and poly [(lactic acid)‐co‐(glycolic acid)]," Polymer International, vol. 54, pp. 36-46, 2005. [58]L. Gasperini, J. F. Mano, and R. L. Reis, "Natural polymers for the microencapsulation of cells," Journal of the Royal Society Interface, vol. 11, p. 20140817, 2014. [59]S. L. Rowe, S. Lee, and J. P. Stegemann, "Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels," Acta biomaterialia, vol. 3, pp. 59-67, 2007. [60]B. Hoppe, "Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation," Thromb Haemost, vol. 112, pp. 649-658, 2014. [61]A. S. Wolberg, "Thrombin generation and fibrin clot structure," Blood reviews, vol. 21, pp. 131-142, 2007. [62]A. S. Wolberg, D. M. Monroe, H. R. Roberts, and M. Hoffman, "Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk," Blood, vol. 101, pp. 3008-3013, 2003. [63]B. Blombäck, B. Hessel, D. Hogg, and L. Therkildsen, "A two-step fibrinogen--fibrin transition in blood coagulation," Nature, vol. 275, pp. 501-505, 1978. [64]V. L. Stefanelli and T. H. Barker, "The evolution of fibrin-specific targeting strategies," Journal of Materials Chemistry B, vol. 3, pp. 1177-1186, 2015. [65]E. G. Levin, "Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex," Proceedings of the National Academy of Sciences, vol. 80, pp. 6804-6808, 1983. [66]A. Khalafallah, C. Jarvis, M. Morse, A.-M. Albarzan, P. Stewart, G. Bates, et al., "Evaluation of the innovance d-dimer assay for the diagnosis of disseminated intravascular coagulopathy in different clinical settings," Clinical and Applied Thrombosis/Hemostasis, vol. 20, pp. 91-97, 2014. [67]T. Hulle, P. Exter, P. Erkens, J. Es, I. Mos, H. Cate, et al., "Variable D‐dimer thresholds for diagnosis of clinically suspected acute pulmonary embolism," Journal of Thrombosis and Haemostasis, vol. 11, pp. 1986-1992, 2013. [68]T. Hulle, M. Tan, P. Den Exter, G. Mol, A. Iglesias del Sol, M. Ree, et al., "Selective D‐dimer testing for the diagnosis of acute deep vein thrombosis: a validation study," Journal of Thrombosis and Haemostasis, vol. 11, pp. 2184-2186, 2013. [69]M. Gomes and A. A. Khorana, "Risk assessment for thrombosis in cancer," in Seminars in thrombosis and hemostasis, 2014, pp. 319-324. [70]P. de la Puente and D. Ludeña, "Cell culture in autologous fibrin scaffolds for applications in tissue engineering," Experimental cell research, vol. 322, pp. 1-11, 2014. [71]N. S. Rejinold, M. Muthunarayanan, N. Deepa, K. Chennazhi, S. Nair, and R. Jayakumar, "Development of novel fibrinogen nanoparticles by two-step co-acervation method," International journal of biological macromolecules, vol. 47, pp. 37-43, 2010. [72]D. D. Swartz, J. A. Russell, and S. T. Andreadis, "Engineering of fibrin-based functional and implantable small-diameter blood vessels," American Journal of Physiology-Heart and Circulatory Physiology, vol. 288, pp. H1451-H1460, 2005. [73]S. F. Barreto-Ortiz, J. Fradkin, J. Eoh, J. Trivero, M. Davenport, B. Ginn, et al., "Fabrication of 3-dimensional multicellular microvascular structures," The FASEB Journal, vol. 29, pp. 3302-3314, 2015. [74]Y.-T. Tung, C.-C. Chang, J.-C. Ju, and G.-J. Wang, "Fabrication of a reticular poly (lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks," Science and Technology of advanced MaTerialS, vol. 18, pp. 163-171, 2017. [75]S. Yakovlev, I. Mikhailenko, G. Tsurupa, A. M. Belkin, and L. Medved, "Polymerization of fibrin αC-domains promotes endothelial cell migration and proliferation," Thrombosis and haemostasis, vol. 112, p. 1244, 2014. [76]T. A. Ahmed, E. V. Dare, and M. Hincke, "Fibrin: a versatile scaffold for tissue engineering applications," Tissue Engineering Part B: Reviews, vol. 14, pp. 199-215, 2008. [77]S. Jockenhoevel, G. Zund, S. P. Hoerstrup, K. Chalabi, J. S. Sachweh, L. Demircan, et al., "Fibrin gel–advantages of a new scaffold in cardiovascular tissue engineering," European journal of cardio-thoracic surgery, vol. 19, pp. 424-430, 2001. [78]J. Kopp, M. G. Jeschke, A. D. Bach, U. Kneser, and R. E. Horch, "Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix," Cell and Tissue Banking, vol. 5, pp. 89-96, 2004. [79]R. Rivkin, A. Ben-Ari, I. Kassis, L. Zangi, E. Gaberman, L. Levdansky, et al., "High-yield isolation, expansion, and differentiation of murine bone marrow-derived mesenchymal stem cells using fibrin microbeads (FMB)," Cloning and stem cells, vol. 9, pp. 157-175, 2007. [80]H. Zhou and H. H. Xu, "The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering," Biomaterials, vol. 32, pp. 7503-7513, 2011. [81]F. A. Auger, L. Gibot, and D. Lacroix, "The pivotal role of vascularization in tissue engineering," Annu Rev Biomed Eng, vol. 15, pp. 177-200, 2013. [82]M. W. Laschke, Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, et al., "Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes," Tissue engineering, vol. 12, pp. 2093-2104, 2006.
|