|
[1] B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized, Nature, 353 (1991) 737-740. [2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature chemistry, 6 (2014) 242-247. [3] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical communications, 51 (2015) 15894-15897. [4] H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells, Advanced Functional Materials, 20 (2010) 13-19. [5] J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.-R. Jung, B. Park, The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells, Journal of Power Sources, 196 (2011) 10526-10531. [6] S. Panigrahi, D. Basak, Morphology driven ultraviolet photosensitivity in ZnO-CdS composite, Journal of colloid and interface science, 364 (2011) 10-17. [7] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, Journal of the American Chemical Society, 128 (2006) 2385-2393. [8] Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells, Journal of Applied Physics, 103 (2008) 084304. [9] R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic− inorganic hybrid solar cells, The Journal of Physical Chemistry B, 106 (2002) 7578-7580. [10] P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots, The Journal of Physical Chemistry B, 110 (2006) 25451-25454. [11] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, The Journal of Physical Chemistry C, 112 (2008) 18737-18753. [12] J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.J. Wan, Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, J Am Chem Soc, 138 (2016) 4201-4209. [13] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE Journal of Photovoltaics, 4 (2014) 1433-1435. [14] C.V. Gopi, M. Venkata-Haritha, S.K. Kim, H.J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control, Nanoscale, 7 (2015) 12552-12563. [15] I. Hod, A. Zaban, Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects, Langmuir : the ACS journal of surfaces and colloids, 30 (2014) 7264-7273. [16] K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells, The Journal of Physical Chemistry C, 117 (2013) 5584-5592. [17] K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control, J Am Chem Soc, 137 (2015) 5602-5609. [18] Z. Chen, W. Peng, K. Zhang, J. Zhang, X. Yang, Y. Numata, L. Han, Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 7004. [19] G. Niu, N. Li, L. Wang, W. Li, Y. Qiu, Combined post-modification of iodide ligands and wide band gap ZnS in quantum dot sensitized solar cells, Physical chemistry chemical physics : PCCP, 16 (2014) 18327-18332. [20] J. Huang, B. Xu, C. Yuan, H. Chen, J. Sun, L. Sun, H. Agren, Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation, ACS applied materials & interfaces, 6 (2014) 18808-18815. [21] L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, L. Sun, Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte, J Am Chem Soc, 133 (2011) 8458-8460. [22] Z. Ning, C. Yuan, H. Tian, Y. Fu, L. Li, L. Sun, H. Ågren, Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple, Journal of Materials Chemistry, 22 (2012) 6032. [23] W. Feng, L. Zhao, J. Du, Y. Li, X. Zhong, Quasi-solid-state quantum dot sensitized solar cells with power conversion efficiency over 9% and high stability, J. Mater. Chem. A, 4 (2016) 14849-14856. [24] Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates, Physical chemistry chemical physics : PCCP, 14 (2012) 6479-6486. [25] Y.-F. Xu, W.-Q. Wu, H.-S. Rao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance, Nano Energy, 11 (2015) 621-630. [26] M.A. Hossain, J.R. Jennings, Z.Y. Koh, Q. Wang, Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities, Acs Nano, 5 (2011) 3172-3181. [27] M.A. Hossain, Z.Y. Koh, Q. Wang, PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing, Physical Chemistry Chemical Physics, 14 (2012) 7367. [28] C. Li, L. Yang, J. Xiao, Y.C. Wu, M. Sondergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells, Physical chemistry chemical physics : PCCP, 15 (2013) 8710-8715. [29] Z. Zhu, J. Qiu, K. Yan, S. Yang, Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture, ACS applied materials & interfaces, 5 (2013) 4000-4005. [30] A.T. Salih, A.A. Najim, M.A.H. Muhi, K.R. Gbashi, Single-material multilayer ZnS as anti-reflective coating for solar cell applications, Optics Communications, 388 (2017) 84-89. [31] L.J. Diguna, M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. Shen, T. Toyoda, Photoacoustic and Photoelectrochemical Characterization of Inverse Opal TiO2Sensitized with CdSe Quantum Dots, Japanese Journal of Applied Physics, 45 (2006) 5563-5568. [32] X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307 (2005) 538-544. [33] T. Toyoda, W. Yindeesuk, T. Okuno, M. Akimoto, K. Kamiyama, S. Hayase, Q. Shen, Electronic structures of two types of TiO2electrodes: inverse opal and nanoparticulate cases, RSC Adv., 5 (2015) 49623-49632. [34] Y.-L. Lee, Y.-S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe, Advanced Functional Materials, 19 (2009) 604-609. [35] Y. Bai, C. Han, X. Chen, H. Yu, X. Zong, Z. Li, L. Wang, Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode, Nano Energy, 13 (2015) 609-619. [36] J. Zhang, J. Gao, C.P. Church, E.M. Miller, J.M. Luther, V.I. Klimov, M.C. Beard, PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere, Nano letters, 14 (2014) 6010-6015. [37] A. Braga, S. Giménez, I. Concina, A. Vomiero, I.n. Mora-Seró , Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2Electrodes, The Journal of Physical Chemistry Letters, 2 (2011) 454-460. [38] V. Gonzalez-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Gimenez, Q. Shen, T. Dittrich, I. Mora-Sero, High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation, Physical chemistry chemical physics : PCCP, 15 (2013) 13835-13843. [39] N. Zhou, Y. Yang, X. Huang, H. Wu, Y. Luo, D. Li, Q. Meng, Panchromatic Quantum-Dot-Sensitized Solar Cells Based on a Parallel Tandem Structure, ChemSusChem, 6 (2013) 687-692. [40] S. Kim, M. Kang, S. Kim, J.-H. Heo, J.H. Noh, S.H. Im, S.I. Seok, S.-W. Kim, Fabrication of CuInTe2 and CuInTe2–x Se x Ternary Gradient Quantum Dots and Their Application to Solar Cells, ACS nano, 7 (2013) 4756-4763. [41] J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells, J Am Chem Soc, 135 (2013) 15913-15922. [42] S. Jiao, Q. Shen, I.n. Mora-Seró , J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells, ACS nano, 9 (2015) 908-915. [43] A. Sahasrabudhe, S. Bhattacharyya, Dual Sensitization Strategy for High-Performance Core/Shell/Quasi-shellQuantum Dot Solar Cells, Chemistry of Materials, 27 (2015) 4848-4859. [44] Z.R. Tang, X. Yin, Y. Zhang, Y.J. Xu, Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity, Inorganic chemistry, 52 (2013) 11758-11766. [45] Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array, Crystal Growth and Design, 9 (2009) 2627-2632. [46] H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, M.K. Nazeeruddin, Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process, Nano letters, 9 (2009) 4221-4227. [47] J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu, G. Cao, Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2Film, The Journal of Physical Chemistry C, 116 (2012) 18655-18662. [48] H.J. Yun, T. Paik, M.E. Edley, J.B. Baxter, C.B. Murray, Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments, ACS applied materials & interfaces, 6 (2014) 3721-3728. [49] J.-W. Lee, S. Makuta, S. Sukarasep, J. Bo, T. Suzuki, T. Nakayama, H. Suematsu, K. Niihara, Y. Tachibana, Electron Injection from a CdS Quantum Dot to a TiO2 Conduction Band as an Efficiency Limiting Process: Comparison of QD Depositions between SILAR and Linker Assisted Attachment, Journal of Photopolymer Science and Technology, 29 (2016) 357-362. [50] H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V. Gopi, K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells, Electrochimica Acta, 127 (2014) 427-432. [51] C.V.V.M. Gopi, S. Srinivasa Rao, S.-K. Kim, D. Punnoose, H.-J. Kim, Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells, Journal of Power Sources, 275 (2015) 547-556. [52] D. Punnoose, H.-J. Kim, S.S. Rao, C.S.P. Kumar, Cobalt sulfide counter electrode using hydrothermal method for quantum dot-sensitized solar cells, Journal of Electroanalytical Chemistry, 750 (2015) 19-26. [53] L. Liu, C. Liu, W. Fu, L. Deng, H. Zhong, Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells, Chemphyschem : a European journal of chemical physics and physical chemistry, 17 (2016) 771-776. [54] S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, J. Ko, Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells, Langmuir : the ACS journal of surfaces and colloids, 26 (2010) 13644-13649. [55] S. Zhang, Z. Lan, J. Wu, X. Chen, C. Zhang, Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells, Journal of Alloys and Compounds, 656 (2016) 253-258. [56] L. Kavan, N. Tétreault, T. Moehl, M. Grätzel, Electrochemical Characterization of TiO2Blocking Layers for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118 (2014) 16408-16418. [57] 傅循, 溶膠凝膠法合成 Sb2S3 量子點敏化太陽能電池的研究, 中興大學奈米科學研究所學位 論文, (2017) 1-77. [58] M.E. Simonsen, E.G. S?gaard, Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products, Journal of Sol-Gel Science and Technology, 53 (2009) 485-497. [59] S.S. Prasad, M.D. Raja, J. Madhavan, Synthesis of Cds quantum dots by reverse micelle method, in: Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on, IEEE, 2013, pp. 38-39. [60] S.N. Karthick, K.V. Hemalatha, C. Justin Raj, A. Subramania, H.-J. Kim, Preparation of TiO2 paste using poly(vinylpyrrolidone) for dye sensitized solar cells, Thin Solid Films, 520 (2012) 7018-7021. [61] J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells, Nano reviews, 4 (2013). [62] V. Zardetto, T.M. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties, Journal of Polymer Science Part B: Polymer Physics, 49 (2011) 638-648. [63] S. Kalasina, T. Amornsakchai, U. Asawapirom, Nanocomposite TiO2 xerogel film for DSSC photoelectrode via simple modified sol–gel process, Journal of Sol-Gel Science and Technology, 75 (2015) 63-73. [64] A.O.T. Patrocinio, A.S. El-Bachá, E.B. Paniago, R.M. Paniago, N.Y. Murakami Iha, Influence of the Sol-Gel pH Process and Compact Film on the Efficiency of TiO????-Based Dye-Sensitized Solar Cells, International Journal of Photoenergy, 2012 (2012) 1-7. [65] K. Fan, M. Liu, T. Peng, L. Ma, K. Dai, Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells, Renewable Energy, 35 (2010) 555-561. [66] H. Wu, J. Ma, C. Zhang, H. He, Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3, Journal of Environmental Sciences, 26 (2014) 673-682. [67] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films, Scientific reports, 4 (2014) 4043. [68] W.W. Yu, X. Peng, Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers, Angewandte Chemie International Edition, 41 (2002) 2368-2371. [69] G. Govindaraj, R. Murugaraj, A new anomalous relaxation function and electrical properties of disordered materials, Materials Science and Engineering: B, 77 (2000) 60-66. [70] J. Rios, J. Calderón, R. Nogueira, Electrochemical behavior of copper in drinking water: evaluation of dissolution process at low anodic overpotential, Journal of the Brazilian Chemical Society, 22 (2011) 1362-1370. [71] R. Sastrawan, Photovoltaic modules of dye solar cells, Disertasi University of Freiburg, (2006). [72] Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, The Journal of Physical Chemistry B, 109 (2005) 14945-14953. [73] R. Murugaraj, G. Govindaraj, Analysis of electrical relaxation in lithium phosphate glasses, Solid State Ionics, 176 (2005) 109-116. [74] 黃恆璿, 緻密層對光敏太陽能電池效率的影響, 中興大學奈米科學研究所學位論文, (2016) 1-59. [75] 鄭冠宏, 溶凝膠法製備的CdS量子點敏化太陽能電池之研究, 中興大學物理研究所學位論文, (2016) 1-73.
|