跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晨右
研究生(外文):Chen-Yu Li
論文名稱:嶄新的二氧化鈦與硫化鎘混合塗膠製備的量子點敏化太陽能電池
論文名稱(外文):Brand-New TiO2 & CdS Mixed Paste Based Quantum Dots-Sensitized Solar Cell
指導教授:斯頌平
指導教授(外文):Sung-Ping Szu
口試委員:李明威李英德
口試委員(外文):Ming-Way LeeYing-Te Lee
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:量子點太陽能電池溶膠-凝膠緻密層逆微胞法膠體
外文關鍵詞:QDSCsSol-GelCompact LayerReverse MicellesPaste
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以溶膠-凝膠法製備出在pH=3~11不同酸鹼值環境下的二氧化鈦顆粒以及以逆微胞法合成出約5nm硫化鎘量子點。控制二氧化鈦與硫化鎘量子點不同的比例製作成TiO2與CdS均勻混合膠體,並應用於量子點敏化太陽能電池的光陽極。由I-V 量測發現pH=7製備的TiO2顆粒與CdS混合膠體製備的電池,由於其CdS量子點易吸附於TiO2上,獲得2.47mA/cm2電流密度、0.68V開路電壓與超過0.8%最佳的光電轉換效率。經由SEM 與EDX Mapping發現,本製程可以明顯改善之前本實驗室直接由溶凝膠法製備產生TiO2經過熱處理後過度聚集成團塊,與量子點分佈不均勻的問題。電池樣品經由EIS量測分析其各界面電荷移動的機制。
In this study, titanium dioxide particles using different pH values ranging from 3 to 11 are prepared by sol-gel method, while, cadmium sulfide quantum dots with size about 5nm are synthesized by reverse micelles method. The photoelectrode paste of the quantum dot-sensitized solar cells are prepared by mixing of different ratio of TiO2 and CdS. The solar cell using the photoelectrode paste that is prepared with pH = 7 and TiO2/CdS=1 has the best performance. The photoelectric conversion efficiency of this cell is 0.8, and the short circuit current density is 2.47mA/cm2,, and the open circuit voltage equals to 0.68V. Ac impedance is employed to investigate the electron transport mechanism between the interfaces of the battery.
摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 QDSCs發展現況 2
1.2.1 減少電子-電洞對的複合 3
1.2.2 電解液性能的提升 4
1.2.3 光陽極的研究進展 4
1.2.4 對電極(Counter Electrode, CE) 9
1.3 動機 10
第二章 實驗原理 11
2.1 QDSCs工作原理&元件組成結構 11
2.1.1 FTO(Fluorine-doped Tin Oxide)透明導電玻璃 12
2.1.2 TiO2緻密層光電極 12
2.1.3 TiO2顆粒&CdS量子點混合膠體 13
2.1.4 多碘電解液 15
2.1.5 Pt對電極 15
2.2 溶膠-凝膠法(Sol-Gel Method) 16
2.3 逆微胞法(Reverse Micelles Method) 17
2.4 QDSCs模型與電性量測 18
2.4.1 直流電分析(I-V curve) 18
2.4.2 交流電分析-電化學阻抗頻譜(Electrochemical Impedance Spectroscopy) 19
第三章 實驗流程 25
3.1 材料與化學藥品 25
3.2 中孔洞TiO2緻密層光電極的製備 25
3.3 合成TiO2與CdS量子點混合膠體 26
3.4 QDSCs的封裝 29
3.5 特性觀察與量測 30
第四章 結果與討論 32
4.1 緻密層光陽極 32
4.2 TiO2與CdS量子點混合膠體 33
4.3 QDSCs電性量測 42
第五章 結論 49
第六章 參考資料 50
[1] B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized, Nature, 353
(1991) 737-740.
[2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U.
Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved
through the molecular engineering of porphyrin sensitizers, Nature chemistry, 6 (2014) 242-247.
[3] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized
solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical
communications, 51 (2015) 15894-15897.
[4] H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells, Advanced
Functional Materials, 20 (2010) 13-19.
[5] J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.-R. Jung, B. Park, The effect of a blocking layer
on the photovoltaic performance in CdS quantum-dot-sensitized solar cells, Journal of Power
Sources, 196 (2011) 10526-10531.
[6] S. Panigrahi, D. Basak, Morphology driven ultraviolet photosensitivity in ZnO-CdS composite,
Journal of colloid and interface science, 364 (2011) 10-17.
[7] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy
with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, Journal of the American
Chemical Society, 128 (2006) 2385-2393.
[8] Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties
of CdSe quantum dot-sensitized solar cells, Journal of Applied Physics, 103 (2008) 084304.
[9] R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic− inorganic
hybrid solar cells, The Journal of Physical Chemistry B, 106 (2002) 7578-7580.
[10] P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells
sensitized with InAs quantum dots, The Journal of Physical Chemistry B, 110 (2006) 25451-25454.
[11] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, The
Journal of Physical Chemistry C, 112 (2008) 18737-18753.
[12] J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.J. Wan,
Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, J Am
Chem Soc, 138 (2016) 4201-4209.
[13] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y.
Ichihashi, T. Mishima, N. Matsubara, Achievement of more than 25% conversion efficiency with
crystalline silicon heterojunction solar cell, IEEE Journal of Photovoltaics, 4 (2014) 1433-1435.
[14] C.V. Gopi, M. Venkata-Haritha, S.K. Kim, H.J. Kim, Improved photovoltaic performance and
stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light
absorption and recombination control, Nanoscale, 7 (2015) 12552-12563.
[15] I. Hod, A. Zaban, Materials and interfaces in quantum dot sensitized solar cells: challenges,
advances and prospects, Langmuir : the ACS journal of surfaces and colloids, 30 (2014) 7264-7273.
[16] K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F.
Bent, Effect of Al2O3Recombination Barrier Layers Deposited by Atomic Layer Deposition in
Solid-State CdS Quantum Dot-Sensitized Solar Cells, The Journal of Physical Chemistry C, 117 (2013)
5584-5592.
[17] K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn, J. Bisquert,
X. Zhong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8%
by recombination control, J Am Chem Soc, 137 (2015) 5602-5609.
[18] Z. Chen, W. Peng, K. Zhang, J. Zhang, X. Yang, Y. Numata, L. Han, Band alignment by ternary
crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized
solar cells, Journal of Materials Chemistry A, 2 (2014) 7004.
[19] G. Niu, N. Li, L. Wang, W. Li, Y. Qiu, Combined post-modification of iodide ligands and wide band
gap ZnS in quantum dot sensitized solar cells, Physical chemistry chemical physics : PCCP, 16 (2014)
18327-18332.
[20] J. Huang, B. Xu, C. Yuan, H. Chen, J. Sun, L. Sun, H. Agren, Improved performance of colloidal
CdSe quantum dot-sensitized solar cells by hybrid passivation, ACS applied materials & interfaces, 6
(2014) 18808-18815.
[21] L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, L. Sun, Highly efficient CdS quantum
dot-sensitized solar cells based on a modified polysulfide electrolyte, J Am Chem Soc, 133 (2011)
8458-8460.
[22] Z. Ning, C. Yuan, H. Tian, Y. Fu, L. Li, L. Sun, H. Ågren, Type-II colloidal quantum dot sensitized
solar cells with a thiourea based organic redox couple, Journal of Materials Chemistry, 22 (2012)
6032.
[23] W. Feng, L. Zhao, J. Du, Y. Li, X. Zhong, Quasi-solid-state quantum dot sensitized solar cells with
power conversion efficiency over 9% and high stability, J. Mater. Chem. A, 4 (2016) 14849-14856.
[24] Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li, Q. Meng, Toward highly
efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on
transparent conductive substrates, Physical chemistry chemical physics : PCCP, 14 (2012)
6479-6486.
[25] Y.-F. Xu, W.-Q. Wu, H.-S. Rao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, CdS/CdSe co-sensitized TiO2
nanowire-coated hollow Spheres exceeding 6% photovoltaic performance, Nano Energy, 11 (2015)
621-630.
[26] M.A. Hossain, J.R. Jennings, Z.Y. Koh, Q. Wang, Carrier generation and collection in
CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities, Acs Nano, 5
(2011) 3172-3181.
[27] M.A. Hossain, Z.Y. Koh, Q. Wang, PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced
infrared light harnessing, Physical Chemistry Chemical Physics, 14 (2012) 7367.
[28] C. Li, L. Yang, J. Xiao, Y.C. Wu, M. Sondergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, ZnO
nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells, Physical chemistry
chemical physics : PCCP, 15 (2013) 8710-8715.
[29] Z. Zhu, J. Qiu, K. Yan, S. Yang, Building high-efficiency CdS/CdSe-sensitized solar cells with a
hierarchically branched double-layer architecture, ACS applied materials & interfaces, 5 (2013)
4000-4005.
[30] A.T. Salih, A.A. Najim, M.A.H. Muhi, K.R. Gbashi, Single-material multilayer ZnS as anti-reflective
coating for solar cell applications, Optics Communications, 388 (2017) 84-89.
[31] L.J. Diguna, M. Murakami, A. Sato, Y. Kumagai, T. Ishihara, N. Kobayashi, Q. Shen, T. Toyoda,
Photoacoustic and Photoelectrochemical Characterization of Inverse Opal TiO2Sensitized with CdSe
Quantum Dots, Japanese Journal of Applied Physics, 45 (2006) 5563-5568.
[32] X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, S.
Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307 (2005) 538-544.
[33] T. Toyoda, W. Yindeesuk, T. Okuno, M. Akimoto, K. Kamiyama, S. Hayase, Q. Shen, Electronic
structures of two types of TiO2electrodes: inverse opal and nanoparticulate cases, RSC Adv., 5 (2015)
49623-49632.
[34] Y.-L. Lee, Y.-S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization
of CdS/CdSe, Advanced Functional Materials, 19 (2009) 604-609.
[35] Y. Bai, C. Han, X. Chen, H. Yu, X. Zong, Z. Li, L. Wang, Boosting the efficiency of quantum dot
sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and
photoanode, Nano Energy, 13 (2015) 609-619.
[36] J. Zhang, J. Gao, C.P. Church, E.M. Miller, J.M. Luther, V.I. Klimov, M.C. Beard, PbSe quantum dot
solar cells with more than 6% efficiency fabricated in ambient atmosphere, Nano letters, 14 (2014)
6010-6015.
[37] A. Braga, S. Giménez, I. Concina, A. Vomiero, I.n. Mora-Seró , Panchromatic Sensitized Solar Cells
Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2Electrodes, The
Journal of Physical Chemistry Letters, 2 (2011) 454-460.
[38] V. Gonzalez-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Gimenez, Q. Shen, T. Dittrich, I. Mora-Sero,
High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of
metal precursors in the electron injection and charge separation, Physical chemistry chemical
physics : PCCP, 15 (2013) 13835-13843.
[39] N. Zhou, Y. Yang, X. Huang, H. Wu, Y. Luo, D. Li, Q. Meng, Panchromatic Quantum-Dot-Sensitized
Solar Cells Based on a Parallel Tandem Structure, ChemSusChem, 6 (2013) 687-692.
[40] S. Kim, M. Kang, S. Kim, J.-H. Heo, J.H. Noh, S.H. Im, S.I. Seok, S.-W. Kim, Fabrication of CuInTe2
and CuInTe2–x Se x Ternary Gradient Quantum Dots and Their Application to Solar Cells, ACS nano,
7 (2013) 4756-4763.
[41] J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell
colloidal quantum dot exciplex states for the development of highly efficient
quantum-dot-sensitized solar cells, J Am Chem Soc, 135 (2013) 15913-15922.
[42] S. Jiao, Q. Shen, I.n. Mora-Seró , J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, J. Bisquert, Band
engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex
quantum dot sensitized solar cells, ACS nano, 9 (2015) 908-915.
[43] A. Sahasrabudhe, S. Bhattacharyya, Dual Sensitization Strategy for High-Performance
Core/Shell/Quasi-shellQuantum Dot Solar Cells, Chemistry of Materials, 27 (2015) 4848-4859.
[44] Z.R. Tang, X. Yin, Y. Zhang, Y.J. Xu, Synthesis of titanate nanotube-CdS nanocomposites with
enhanced visible light photocatalytic activity, Inorganic chemistry, 52 (2013) 11758-11766.
[45] Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Solution-based synthesis of a CdS nanoparticle/ZnO nanowire
heterostructure array, Crystal Growth and Design, 9 (2009) 2627-2632.
[46] H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, M.K. Nazeeruddin,
Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer
adsorption and reaction process, Nano letters, 9 (2009) 4221-4227.
[47] J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu, G. Cao, Enhanced Performance of CdS/CdSe
Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2Film,
The Journal of Physical Chemistry C, 116 (2012) 18655-18662.
[48] H.J. Yun, T. Paik, M.E. Edley, J.B. Baxter, C.B. Murray, Enhanced charge transfer kinetics of CdSe
quantum dot-sensitized solar cell by inorganic ligand exchange treatments, ACS applied materials &
interfaces, 6 (2014) 3721-3728.
[49] J.-W. Lee, S. Makuta, S. Sukarasep, J. Bo, T. Suzuki, T. Nakayama, H. Suematsu, K. Niihara, Y.
Tachibana, Electron Injection from a CdS Quantum Dot to a TiO2 Conduction Band as
an Efficiency Limiting Process: Comparison of QD Depositions between SILAR and Linker Assisted
Attachment, Journal of Photopolymer Science and Technology, 29 (2016) 357-362.
[50] H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V. Gopi, K. Prabakar,
Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot
sensitized solar cells, Electrochimica Acta, 127 (2014) 427-432.
[51] C.V.V.M. Gopi, S. Srinivasa Rao, S.-K. Kim, D. Punnoose, H.-J. Kim, Highly effective nickel sulfide
counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized
solar cells, Journal of Power Sources, 275 (2015) 547-556.
[52] D. Punnoose, H.-J. Kim, S.S. Rao, C.S.P. Kumar, Cobalt sulfide counter electrode using
hydrothermal method for quantum dot-sensitized solar cells, Journal of Electroanalytical Chemistry,
750 (2015) 19-26.
[53] L. Liu, C. Liu, W. Fu, L. Deng, H. Zhong, Phase Transformations of Copper Sulfide Nanocrystals:
Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells, Chemphyschem : a European journal
of chemical physics and physical chemistry, 17 (2016) 771-776.
[54] S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, J. Ko, Ordered multimodal porous carbon as
highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells, Langmuir : the
ACS journal of surfaces and colloids, 26 (2010) 13644-13649.
[55] S. Zhang, Z. Lan, J. Wu, X. Chen, C. Zhang, Preparation of novel TiO2 quantum dot blocking
layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells,
Journal of Alloys and Compounds, 656 (2016) 253-258.
[56] L. Kavan, N. Tétreault, T. Moehl, M. Grätzel, Electrochemical Characterization of TiO2Blocking
Layers for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118 (2014)
16408-16418.
[57] 傅循, 溶膠凝膠法合成 Sb2S3 量子點敏化太陽能電池的研究, 中興大學奈米科學研究所學位
論文, (2017) 1-77.
[58] M.E. Simonsen, E.G. S?gaard, Sol–gel reactions of titanium alkoxides and water: influence of pH
and alkoxy group on cluster formation and properties of the resulting products, Journal of Sol-Gel
Science and Technology, 53 (2009) 485-497.
[59] S.S. Prasad, M.D. Raja, J. Madhavan, Synthesis of Cds quantum dots by reverse micelle method,
in: Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013
International Conference on, IEEE, 2013, pp. 38-39.
[60] S.N. Karthick, K.V. Hemalatha, C. Justin Raj, A. Subramania, H.-J. Kim, Preparation of TiO2 paste
using poly(vinylpyrrolidone) for dye sensitized solar cells, Thin Solid Films, 520 (2012) 7018-7021.
[61] J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells, Nano reviews, 4 (2013).
[62] V. Zardetto, T.M. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: A practical
investigation on the electrical, film flexibility, optical, temperature, and solvent resistance
properties, Journal of Polymer Science Part B: Polymer Physics, 49 (2011) 638-648.
[63] S. Kalasina, T. Amornsakchai, U. Asawapirom, Nanocomposite TiO2 xerogel film for DSSC
photoelectrode via simple modified sol–gel process, Journal of Sol-Gel Science and Technology, 75
(2015) 63-73.
[64] A.O.T. Patrocinio, A.S. El-Bachá, E.B. Paniago, R.M. Paniago, N.Y. Murakami Iha, Influence of the
Sol-Gel pH Process and Compact Film on the Efficiency of TiO????-Based Dye-Sensitized
Solar Cells, International Journal of Photoenergy, 2012 (2012) 1-7.
[65] K. Fan, M. Liu, T. Peng, L. Ma, K. Dai, Effects of paste components on the properties of
screen-printed porous TiO2 film for dye-sensitized solar cells, Renewable Energy, 35 (2010)
555-561.
[66] H. Wu, J. Ma, C. Zhang, H. He, Effect of TiO2 calcination temperature on the photocatalytic
oxidation of gaseous NH3, Journal of Environmental Sciences, 26 (2014) 673-682.
[67] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better
photocatalyst than rutile?--Model studies on epitaxial TiO2 films, Scientific reports, 4 (2014) 4043.
[68] W.W. Yu, X. Peng, Formation of high-quality CdS and other II–VI semiconductor nanocrystals in
noncoordinating solvents: tunable reactivity of monomers, Angewandte Chemie International
Edition, 41 (2002) 2368-2371.
[69] G. Govindaraj, R. Murugaraj, A new anomalous relaxation function and electrical properties of
disordered materials, Materials Science and Engineering: B, 77 (2000) 60-66.
[70] J. Rios, J. Calderón, R. Nogueira, Electrochemical behavior of copper in drinking water:
evaluation of dissolution process at low anodic overpotential, Journal of the Brazilian Chemical
Society, 22 (2011) 1362-1370.
[71] R. Sastrawan, Photovoltaic modules of dye solar cells, Disertasi University of Freiburg, (2006).
[72] Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of
dye-sensitized solar cells, The Journal of Physical Chemistry B, 109 (2005) 14945-14953.
[73] R. Murugaraj, G. Govindaraj, Analysis of electrical relaxation in lithium phosphate glasses, Solid
State Ionics, 176 (2005) 109-116.
[74] 黃恆璿, 緻密層對光敏太陽能電池效率的影響, 中興大學奈米科學研究所學位論文, (2016)
1-59.
[75] 鄭冠宏, 溶凝膠法製備的CdS量子點敏化太陽能電池之研究, 中興大學物理研究所學位論文,
(2016) 1-73.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top