[1]F. Q. Hu, L. Wei, Z. Zhou, Y. L. Ran, Z. Li, M. Y. Gao, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer, Adv. Mater. 18 (2006) 2553–2556.
[2]Xiaoying Yang, Xiaoyan Zhang, Yanfeng Ma, Yi Huang, Yinsong Wang, Yongsheng Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem. 19 (2009) 2710-2714.
[3]Jean-Paul Fortin, Claire Wilhelm, Jacques Servais, Christine Ménager, Jean-Claude Bacri, and Florence Gazeau, Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, J. Am. Chem. Soc. 129 (2007) 2628–2635.
[4]Sergei V. Salihov et al, Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles, Journal of Magnetism and Magnetic Materials. 394 (2016) 173-178.
[5]Rajib Ghosh Chaudhuri, Santanu Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem. Rev. 112 (2012) 2373–2433.
[6]I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett. 5 (2005) 829e34
[7]Dave SR, Gao X, Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology, Nanobiotechnol. 1 (2009) 583-609.
[8]Y. Bao, A. B. Pakhomov, Kannan M. Krishnan, Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids, J. Appl. Phys. 99 (2006) 08H107.
[9]Jin Xie, Kai Chen, Ha-Young Lee, Chenjie Xu, Andrew R. Hsu, Sheng Peng, Xiaoyuan Chen, Ultrasmall c(RGDyK)-Coated Fe3O4 Nanoparticles and Their Specific Targetingto Integrin αvβ3-Rich Tumor Cells, J. AM. CHEM. SOC. 130 (2008) 7542–7543.
[10]Leena Mohammed, Hassan G. Gomaa, Doaa Ragab, Jesse Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology. 30 (2017) 1–14.
[11]王崇人 科學發展,354 (2002) 48。
[12]Debanjana Ghosh , Nitin Chattopadhyay, Gold and silver nanoparticles based superquenching of fluorescence: A review, Journal of Luminescence. 160 (2015) 223–232.
[13]Yuanyuang Lia, Hermann J. Schluesenerb, Shunqing Xua, Gold nanoparticle-based biosensors, Gold Bulletin. 43 (2010) 29–41.
[14]L. He, M.D. Musick, S.R. Nicewarner, F.G. Salinas, S.J. Benkovic, M.J. Natan and C.D. Keating, Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization, Journal of the American Chemical Society. 122 (2000) 9071.
[15]S. Andreescu and L.A. Luck, Anal Biochem, 2008, 375, 282.
[16]H. Cai, C. Xu, P. He and Y. Fang, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA, Journal of Electroanalytical Chemistry. 510 (2001) 78.
[17]Bartłomiej Graczykowski, Andrzej Dobek, Iron–dextran complex: Geometrical structure and magneto-optical features, Journal of Colloid and Interface Science. 363 (2011) 551–556.
[18]Prashant K. Jain et al, Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals, Nano Lett. 4 (2009) 9.
[19]Raj Kumar Dani, Hongwang Wang, Stefan H. Bossmann, Gary Wysin, and Viktor Chikan, Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: Comparison of experiment and theory, J. Chem. Phys. 135 (2011) 224502.
[20]Ajeet Kaushik, Rahul DevJayant, Sneham Tiwari, Arti Vashist, Madhavan Nai, Nano-biosensors to detect beta-amyloid for Alzheimer's disease management, Biosensors and Bioelectronics. 80 (2016) 273–287.
[21]Förstl H, Kurz A, Clinical features of Alzheimer's disease, Eur Arch Psychiatry Clin Neurosci. 249 (1999) 288-90.
[22]Yipeng Wang& Eckhard Mandelkow, Tau in physiology and pathology, Nature Reviews Neuroscience. 17 (2016) 22–35.
[23]Arne Ittner et al, Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice, Science. 18 (2017) 904-908
[24]Carlo Ballatore, Virginia M.Y. Lee & John Q, Trojanowski, Tau-mediated neurodegenerat ion in Alzheimer's disease and related disorders, Nature Reviews Neuroscience. 8 (2009) 663-672.
[25]王建枝,田青。Tau蛋白過度磷酸化機制及其在阿爾茨海默病神經元變性中的作用。生物化學與生物物理進展,2012,08:771-777.
[26]Marc Vandermeeren et al, Detection of Proteins in Normal and Alzheimer's Disease Cerebrospinal Fluid with a Sensitive Sandwich Enzyme-Linked Immunosorbent Assay, J. Neirrochem. 61 (1993) 1828-1834.
[27]Esteves-Villanueva JO, Trzeciakiewicz H, Martic S, A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker, Analyst. 139 (2014) 2823-31.
[28]Adria Neely et al, Ultrasensitive and Highly Selective Detection of Alzheimer’s Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle, ACS Nano. 3 (2009) 2834–2840.
[29]Kai-Yuan et al, Plasma Aβ but Not Tau is Related to Brain PiB Retention in Early Alzheimer’s Disease, ACS Chem. Neurosci. 9 (2014) 830–836.
[30]林延信 ”利用交流法拉第磁光效應分析CRP生物功能性磁性奈米粒子之基本特性” 國立中興大學物理研究所碩士學位論文,2015年。[31]J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors : review, Sens. Actuat. B. 54 (1999) 3–15.
[32]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B. 107 (2003) 668-677.
[33]Stephan Link and Mostafa A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, J. Phys. Chem. B. 21 (1999) 4212–4217.
[34]曾賢德 “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作” 物理雙月刊32-2.[35]R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles, Biochemical Engineering Journal. 42 (2008) 290–300.
[36]Cai Jingting, Liu Huining, and Zhang Yi, Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector, International Journal of Nanomedicine. 6 (2011) 285-294.
[37]Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E, Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding, Nano Lett. 4 (2004) 719–723.
[38]Ali Hossein Rezayan, Majid Mousavi, Somayyeh Kheirjou, Ghasem Amoabediny, Mehdi Shafiee Ardestani, Javad Mohammadnejad, Monodisperse magnetite(Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method, Journal of Magnetism and Magnetic Materials. 420 (2016) 210–217.