(3.215.180.226) 您好!臺灣時間:2021/03/09 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳筱云
研究生(外文):Hsiao-Yun Chen
論文名稱:雞傳染性華氏囊病及家禽流行性感冒雙價疫苗之研發
論文名稱(外文):Development of A Bivalent Vaccine against Infectious Bursal Disease and Avian Influenza in Chickens
指導教授:謝明昆謝明昆引用關係
指導教授(外文):Ming-Kun Hsieh
口試委員:歐繕嘉陳怡寧
口試委員(外文):Shan-Chia OuYi-Ning Chen
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:微生物暨公共衛生學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:雞傳染性華氏囊病禽流感
外文關鍵詞:infectious bursal diseaseavian influenza
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雞傳染性華氏囊病 (Infectious bursal disease,IBD)與禽流感 (Avian influenza,AI)為具高度傳染性之禽類病毒性疾病,IBD由傳染性華氏囊病毒 (Infectious bursal disease virus,IBDV)所引起。禽流感由禽流感病毒 (Avian influenza virus,AIV)所感染,屬於A型流感病毒,此兩種疾病皆使家禽產業遭受嚴重的經濟損失。目前研究指出傳染性華氏囊病毒之類病毒顆粒 (Virus-like particle,VLP) 可作為一種安全並且具有良好效力的IBD疫苗,除此之外,IBDV的類病毒顆粒還能作為載體攜帶外源基因,具有發展為雙價疫苗的潛力,因為DNA疫苗具有能引發體液性免疫反應,也能引發細胞性免疫反應之特點,因此,本篇論文的目的是以DNA疫苗的架構發展對抗傳染性華氏囊病與禽流感的雙價疫苗。在質體的構築上,選用H6N1亞型的AIV之HA1基因取代部分VP3基因,製備成重組質體pTri/VP243-HA1,另外也將IBDV之VP243基因與H6N1之HA1基因分別構築於pTriEx-3載體,作為對照組質體。藉由免疫螢光染色分析 (Immunofluorescence assay)與西方墨點法 (Western blotting)確認重組質體均能成功表現目標蛋白。第一次動物實驗以純化之質體免疫一週齡雞隻,共免疫三次,採集血液偵測抗體反應,並利用IBDV高病原株 (TWN strain)攻毒試驗評估疫苗保護力,結果顯示免疫之雞隻無法產生對IBD與AI之保護力。因此第二次動物實驗,增加DNA疫苗免疫次數與使用次單位疫苗作為補強免疫。次單位疫苗之重組抗原蛋白由大腸桿菌 (Escherichia coli,E.coli)與人類胚胎腎細胞 (HEK-293T cells)所表現。本論文結果顯示無論是單純免疫pTri/VP243-HA1的DNA疫苗或以VP243-HA1次單位疫苗補強免疫的組別,皆可誘發雞隻產生保護力對抗IBDV之攻毒試驗;而利用自製的間接型酵素連結免疫吸附試驗則觀察到抗HA1抗體的揚升。
Infectious bursal disease (IBD) and avian influenza (AI) are highly contagious avian viral diseases which cause severe economic loss in poultry industry. Current researches showed that virus-like particles (VLP) of infectious bursal disease (IBDV) has been proved as a safe and efficacious vaccine against IBD. Besides, the VLP of IBDV can also play a role as a vector to carry a foreign protein to form a bivalent vaccine. The purpose of this study is to develop a bivalent vaccine against infection of IBDV and AIV. DNA vaccines are a powerful means of inducing humoral and cellular immune responses and chosen for this study to form IBDV VLP carrying HA protein of AIV. Partial VP3 gene of IBDV was substituted with HA1 gene of AIV (H6N1) and the VP243-HA1 gene was cloned into pTriEx-3 vector, named as pTri/VP243-HA1. The plasmid pTri/VP243 carrying VP243 gene and pTri/HA1 carrying HA1 gene were also constructed as control plasmids. Those plasmids were verified by immunofluorescence assay and western blotting. Purified plasmids and proteins expressed by Escherichia coli expression system and HEK-293T cells were prepared for animal experiment. The result indicated that chickens vaccinated with DNA vaccines and boosted with DNA vaccines or subunit vaccines showed protection against IBDV challenge and positive antibodies against HA1 by ELISA.
誌謝 i
摘要 ii
Abstract iii
目次 iv
表次 viii
圖次 ix
第壹章、 緒言 1
第貳章、 文獻探討 3
第一節 雞傳染性華氏囊病 3
(一) 雞傳染性華氏囊病之歷史背景 3
(二) 傳染性華氏囊病之臨床症狀 3
(三) 傳染性華氏囊病之病變 4
(四) 傳播途徑 5
(五) 診斷方法 5
(六) 預防與控制 7
第二節 雞傳染性華氏囊病病毒 8
(一) 病毒特性 8
(二) 病毒致病機制 9
(三) 病毒型態、基因體與蛋白 10
(四) 病毒顆粒 11
(五) 類病毒顆粒 13
第三節 禽流感及禽流感病毒 14
(一) 禽流感之歷史背景 14
(二) 禽流感病毒 14
(三) 禽流感之亞型 21
(四) 禽流感之臨床症狀 21
(五) 傳播途徑與自然宿主 22
(六) 診斷 22
(七) 預防 24
第四節 DNA疫苗與次單位疫苗 24
(一) DNA疫苗 24
(二) 次單位疫苗 27
第五節 傳染性華氏囊病與禽流感雙價疫苗之開發 29
第參章、 材料與方法 31
第一節 重組表現質體之構築 31
(一) 病毒株來源及pTri/VP243質體 31
(二) 原核與真核表現載體pTriEx-3 31
(三) 禽流感病毒紅血球凝集基因(AIV-HA)基因片段之選殖 32
(四) 真核與原核重組表現質體之構築 34
(五) 轉形作用 (Transformation) 35
(六) 質體DNA之小量萃取與確認 36
(七) 菌種保存 37
第二節 重組質體之短暫表現 37
(一) 人類胚胎腎臟細胞株 (HEK-293T)之培養 37
(二) 轉染作用 38
(三) 間接免疫螢光分析 38
第三節 原核細胞重組蛋白之表現 39
(一) 轉形作用 39
(二) 原核細胞重組蛋白之小量誘導表現 40
第四節 真核細胞(HEK-293T)之重組蛋白表現 41
(一) 真核HEK-293T細胞中重組蛋白表現 41
第五節 重組蛋白之分析 42
(一) 蛋白質膠體電泳分析 42
(二) 西方轉漬法 43
第六節 DNA疫苗之製備 44
(一) 質體DNA之大量萃取 44
(二) 質體DNA之濃度及純度分析 45
(三) DNA疫苗之確認 45
(四) 質體DNA之短暫表現 45
第七節 次單位疫苗之製備 46
(一) 重組蛋白之大量誘導表現 46
(二) 重組蛋白之純化 46
(三) 重組蛋白於HEK-293T細胞中表現 47
(四) 重組蛋白之電泳分析 47
(五) 重組蛋白之定量 47
(六) 次單位疫苗之配製 50
第八節 DNA疫苗與重組次單位疫苗之保護效力評估 50
(一) 第一次動物試驗之免疫計畫 50
(二) 第二次動物試驗之免疫計畫 51
(三) 血清抗體檢測 52
(四) 臨床症狀與組織病理學檢查 55
(五) 華氏囊中IBDV之偵測 56
第九節 統計分析 57
第肆章、 結果 58
第一節 重組表現質體之構築 58
第二節 重組表現質體於真核細胞進行短暫表現之確認 58
第三節 原核重組蛋白之表現與確認 59
第四節 重組蛋白之純化 59
第五節 真核重組蛋白之表現與確認 60
第六節 DNA疫苗之製備 60
第七節 次單位疫苗之製備 61
(一) 重組蛋白定量 61
(二) 次單位疫苗之配置 63
第八節 DNA疫苗與重組次單位疫苗之保護效力評估 63
(一) 第一次動物試驗 63
(二) 第二次動物試驗 65
第伍章、 討論 100
參考文獻 106
附錄 120
附錄一、實驗材料之配置 120
附錄二、AIV H6N1之HA基因全長序列 126
1.朱廣中 (2010)。雞傳染性華氏囊病及傳染性支氣管炎雙價疫苗之研發。碩士論文,國立中興大學微生物暨公共衛生學研究所,台中。
2.廖君儀 (2013)。大腸桿菌表現雞傳染性華氏囊病類病毒顆粒產量及保護效力之提升。碩士論文,國立中興大學微生物暨公共衛生學研究所,台中。
3.蔡睦宗、蔡敬屏、陳郁慧、謝思民 (2009)。H1N1新型流感。人畜共通傳染病臨床指引。第二版。行政院衛生署疾病管制局。第77∼82頁。
4.Arnold M, Durairaj V, Mundt E, Schulze K, Breunig KD, Behrens SE. 2012. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PloS one 7: e42870.
5.Berg TP, Gonze M, Meulemans G. 1991. Acute infectious bursal disease in poultry: Isolation and characterisation of a highly virulent strain. Avian pathology : journal of the W.V.P.A 20:133-143.
6.Biesova Z, Miller MA, Schneerson R, Shiloach J, Green KY, Robbins JB, Keith JM. 2009. Preparation, characterization, and immunogenicity in mice of a recombinant influenza H5 hemagglutinin vaccine against the avian H5N1 A/Vietnam/1203/2004 influenza virus. Vaccine 27:6234-6238.
7.Bottcher-Friebertshauser E, Freuer C, Sielaff F, Schmidt S, Eickmann M, Uhlendorff J, Steinmetzer T, Klenk HD, Garten W. 2010. Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors. J Virol 84:5605-5614.
8.Brandt M, Yao K, Liu M, Heckert RA, Vakharia VN. 2001. Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 75:11974-11982.
9.Bui M, Wills EG, Helenius A, Whittaker GR. 2000. Role of the Influenza Virus M1 Protein in Nuclear Export of Viral Ribonucleoproteins. J Virol 74:1781-1786.
10.Capua I, Terregino C, Cattoli G, Mutinelli F, Rodriguez JF. 2003. Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian pathology : journal of the W.V.P.A 32:47-55.
11.Cheema PS, Gupta, SK, Ranjan R, Singh S, Singh VP, Sandey M, Sharma B. 2011. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida. Braz. J. Microbiol 42: 750-760.
12.Chen J, Liu Q, Chen Q, Xiong C, Yao Y, Wang H, Wang H, Chen Z. 2014. Comparative analysis of antibody induction and protection against influenza virus infection by DNA immunization with HA, HAe, and HA1 in mice. Archives of virology 159:689-700.
13.Chen YT, Tsao Z, Chang ST, Juang RH, Wang LC, Chang CM, Wang CH. 2012. Development of an antigen-capture enzyme-linked immunosorbent assay using monoclonal antibodies for detecting H6 avian influenza viruses. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 45:243-247.
14.Chevalier C, Lepault J, Da Costa B, Delmas B. 2004. The Last C-Terminal Residue of VP3, Glutamic Acid 257, Controls Capsid Assembly of Infectious Bursal Disease Virus. J Virol 78:3296-3303.
15.Chevalier C, Lepault J, Erk I, Da Costa B, Delmas B. 2002. The Maturation Process of pVP2 Requires Assembly of Infectious Bursal Disease Virus Capsids. J Virol 76:2384-2392.
16.Cho A, Wrammert J. 2016. Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Current opinion in virology 17:110-115.
17.Da Costa B, Chevalier C, Henry C, Huet JC, Petit S, Lepault J, Boot H, Delmas B. 2002. The Capsid of Infectious Bursal Disease Virus Contains Several Small Peptides Arising from the Maturation Process of pVP2. J Virol 76:2393-2402.
18.Ekiert DC, Wilson IA. 2012. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Current opinion in virology 2:134-141.
19.ElHefnawi M, Sherif FF. 2014. Accurate classification and hemagglutinin amino acid signatures for influenza A virus host-origin association and subtyping. Virology 449:328-338.
20.Escorcia M, Vazquez L, Mendez ST, Rodriguez-Ropon A, Lucio E, Nava GM. 2008. Avian influenza: genetic evolution under vaccination pressure. Virology journal 5:15.
21.Eterradossi N, Saif YM. 2008. Infectious bursal disease. In: Saif YM, ed. Diseases of poultry. 12thed. Wiley-Blackwell, USA, 185-208.
22.Ferrero D, Garriga D, Navarro A, Rodriguez JF, Verdaguer N. 2015. Infectious Bursal Disease Virus VP3 Upregulates VP1-Mediated RNA-Dependent RNA Replication. J Virol 89:11165-11168.
23.Fomsgaard A. 1999. HIV-1 DNA vaccines. Immunology Letters 65:127-131.
24.Food and agriculture organization of the united (FAO). 2004. FAO, OIE & WHO Technical consultation on the Control of Avian Influenza. Animal health special report.
25.Gibbs JS, Malide D, Hornung F, Bennink JR, Yewdell JW. 2003. The Influenza A Virus PB1-F2 Protein Targets the Inner Mitochondrial Membrane via a Predicted Basic Amphipathic Helix That Disrupts Mitochondrial Function. J Virol 77:7214-7224.
26.Hashem AM. 2015. Prospects of HA-based universal influenza vaccine. BioMed research international 2015:414637.
27.He JL, Chiu YC, Chang SC, Wang CH, Juang RH. 2015. Glycosylation at hemagglutinin Asn-167 protects the H6N1 avian influenza virus from tryptic cleavage at Arg-201 and maintains the viral infectivity. Virus research 197:101-107.
28.He JL, Hsieh MS, Juang RH, Wang CH. 2014. A monoclonal antibody recognizes a highly conserved neutralizing epitope on hemagglutinin of H6N1 avian influenza virus. Veterinary microbiology 174:333-341.
29.Hill EM, Tildesley MJ, House T. 2017. Evidence for history-dependence of influenza pandemic emergence. Scientific reports 7:43623.
30.Ho J-Y, Lee L-H, Lin Y-C, Tai Y-J, Chang C-K, Chou Y-m, Lai S-Y, Wang M-Y. 2010. Vaccine development through terminal deletions of an infectious bursal disease virus protein 2 precursor variant. Process Biochemistry 45:786-793.
31.Hsu CN, Wang CH. 2006. Sequence comparison between two quasi strains of H6N1 with different pathogenicity from a single parental isolate. J Microbiol Immunol Infect 39: 292-6.
32.Ingrao F, Rauw F, Lambrecht B, van den Berg T. 2013. Infectious Bursal Disease: a complex host-pathogen interaction. Developmental and comparative immunology 41:429-438.
33.Irigoyen N, Caston JR, Rodriguez JF. 2012. Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly. The Journal of biological chemistry 287:24473-24482.
34.Ingrao, F., F. Rauw, B. Lambrecht and T. van den Berg. 2013. Infectious Bursal Disease: a complex host-pathogen interaction. Dev Comp Immunol 41: 429-438.
35.Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y. 1998. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72: 7367-73.
36.Jang YH, Seong BL. 2014. Options and obstacles for designing a universal influenza vaccine. Viruses 6:3159-3180.
37.Kang SM, Kim MC, Compans RW. 2012. Virus-like particles as universal influenza vaccines. Expert review of vaccines 11:995-1007.
38.Kaverin NV, Rudneva IA, Govorkova EA, Timofeeva TA, Shilov AA, Kochergin-Nikitsky KS, Krylov PS, Webster RG. 2007. Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol 81:12911-12917.
39.Khurana S, Larkin C, Verma S, Joshi MB, Fontana J, Steven AC, King LR, Manischewitz J, McCormick W, Gupta RK, Golding H. 2011. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines. Vaccine 29:5657-5665.
40.Khurana S, Verma S, Verma N, Crevar CJ, Carter DM, Manischewitz J, King LR, Ross TM, Golding H. 2011. Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. J Virol 85:1246-1256.
41.Kibenge FS, Qian B, Nagy E, Cleghorn JR, Wadowska D. 1999. Formation of virus-like particles when the polyprotein gene (segment A) of infectious bursal disease virus is expressed in insect cells. Canadian Journal of Veterinary Research 63:49-55.
42.Kishwar HK. 2013. DNA vaccines: roles against diseases. Germs 3: 26–35.
43.Khurana, S., S. Verma, N. Verma, C. J. Crevar, D. M. Carter, J. Manischewitz, L. R. King, T. M. Ross and H. Golding. 2011. Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. J Virol 85: 1246-1256.
44.Krammer F. 2016. Novel universal influenza virus vaccine approaches. Current opinion in virology 17:95-103.
45.Krammer F, Palese P. 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Current opinion in virology 3:521-530.
46.Kutzler MA, Weiner DB. 2008. DNA vaccines: ready for prime time? Nature reviews. Genetics 9:776-788.
47.Larsen JE, Lund O, Nielsen M. 2006. Improved method for predicting linear B-cell epitopes. Immunome research 2:2.
48.Lee CC, Zhu H, Huang PY, Peng L, Chang YC, Yip CH, Li YT, Cheung CL, Compans R, Yang C, Smith DK, Lam TT, King CC, Guan Y. 2014. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. J Virol 88:5677-5686.
49.Lee HJ, Kim JY, Kye SJ, Seul HJ, Jung SC, Choi KS. 2015. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4. Virology journal 12:177.
50.Lee MS, Wang MY, Tai YJ, Lai SY. 2004. Characterization of particles formed by the precursor protein VPX of infectious bursal disease virus in insect Hi-5 cells: implication on its proteolytic processing. Journal of virological methods 121:191-199.
51.Lee M-S, Doong S-R, Lai S-Y, Ho J-Y, Wang M-Y. 2006. Processing of Infectious Bursal Disease Virus (IBDV) Polyprotein and Self-Assembly of IBDV-Like Particles in Hi-5 Cells. Biotechnology Progress 22:763-769.
52.Lin B, Malanoski AP, Wang Z, Blaney KM, Long NC, Meador CE, Metzgar D, Myers CA, Yingst SL, Monteville MR, Saad MD, Schnur JM, Tibbetts C, Stenger DA. 2009. Universal detection and identification of avian influenza virus by use of resequencing microarrays. Journal of clinical microbiology 47:988-993.
53.Liu MA. 2003. DNA vaccines: a review. Intern Med 253: 402-10.
54.Liu WC, Lin YL, Spearman M, Cheng PY, Butler M, Wu SC. 2016. Influenza Virus Hemagglutinin Glycoproteins with Different N-Glycan Patterns Activate Dendritic Cells In Vitro. J Virol 90:6085-6096.
55.Lombardo, E., Maraver, A., Caston, J.R., Rivera, J., Fernandez-Arias, A., Serrano, A., Carrascosa, J.L., Rodriguez, J.F. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73: 6973-6983.
56.Lukert, P.D., Saif, Y.M. 2003. Infectious bursal disease. In:Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE. Disease of poultry 11th ed. Lowa State University Press Ames, 161-180.
57.Manceur AP, Kamen AA. 2015. Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine 33:5913-5919.
58.Martin Caballero J, Garzon A, Gonzalez-Cintado L, Kowalczyk W, Jimenez Torres I, Calderita G, Rodriguez M, Gondar V, Bernal JJ, Ardavin C, Andreu D, Zurcher T, von Kobbe C. 2012. Chimeric infectious bursal disease virus-like particles as potent vaccines for eradication of established HPV-16 E7-dependent tumors. PloS one 7:e52976.
59.Maw MT, Yamaguchi T, Ohya K, Fukushi H. 2008. Detection of Vaccine-Like Infectious Bursal Disease (IBD) Virus in IBD Vaccine-Free Chickens in Japan. Journal of Veterinary Medical Science 70:833-835.
60.Mawgod SA, Arafa AS, Hussein HA. 2014. Molecular genotyping of the infectious bursal disease virus (IBDV) isolated from Broiler Flocks in Egypt. International Journal of Veterinary Science and Medicine 2:46-52.
61.Mosley YC, Wu CC, Lin TL. 2017. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein. Archives of virology 162:23-32.
62.Mosley YY, Hsieh MK, Wu CC, Lin TL. 2015. Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene. Journal of virological methods 211:36-42.
63.Mosley YY, Wu CC, Lin TL. 2014. An influenza A virus hemagglutinin (HA) epitope inserted in and expressed from several loci of the infectious bursal disease virus genome induces HA-specific antibodies. Archives of virology 159:2033-2041.
64.Mosley YY, Wu CC, Lin TL. 2016. IBDV particles packaged with only segment A dsRNA. Virology 488:68-72.
65.Muller H, Mundt E, Eterradossi N, Islam MR. 2012. Current status of vaccines against infectious bursal disease. Avian pathology : journal of the W.V.P.A 41:133-139.
66.Munster VJ, Schrauwen EJ, de Wit E, van den Brand JM, Bestebroer TM, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. 2010. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J Virol 84:7953-7960.
67.OIE. 2016. Infectious bursal disease (Gumboro disease). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 2017, from the World Wide Web: http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/
68.Ona A, Luque D, Abaitua F, Maraver A, Caston JR, Rodriguez JF. 2004. The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology 322:135-142.
69.Pascua PN, Choi YK. 2014. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clinical and experimental vaccine research 3:140-148.
70.Pascual E, Mata CP, Gomez-Blanco J, Moreno N, Barcena J, Blanco E, Rodriguez-Frandsen A, Nieto A, Carrascosa JL, Caston JR. 2015. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J Virol 89:2563-2574.
71.Pous J, Chevalier C, Ouldali M, Navaza J, Delmas B, Lepault J. 2005. Structure of birnavirus-like particles determined by combined electron cryomicroscopy and X-ray crystallography. The Journal of general virology 86:2339-2346.
72.Redda YT, Venkatesh G, Kalaiyarasu S, Bhatia S, Kumar DS, Nagarajan S, Pillai A, Tripathi S, Kulkarni DD, Dubey SC. 2016. Expression and purification of recombinant H5HA1 protein of H5N1 avian influenza virus in E. coli and its application in indirect ELISA. Journal of immunoassay & immunochemistry 37:346-358.
73.Rice J, Ottensmeier CH, Stevenson FK. 2008. DNA vaccines: precision tools for activating effective immunity against cancer. Nature reviews. Cancer 8:108-120.
74.Roberts P. C., Garten W, Klenk H.D. 1993. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J Virol 67: 3048-3060.
75.Roh JH, Kang M, Wei B, Yoon RH, Seo HS, Bahng JY, Kwon JT, Cha SY, Jang HK. 2016. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens. Poultry science 95:1020-1024.
76.Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology 5:172.
77.Saade F, Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert review of vaccines 11:189-209.
78.Sasaki S. 2003. Adjuvant formulations and delivery systems for DNA vaccines. Methods 31:243-254.
79.Shan S, Ellis T, Edwards J, Fenwick S, Robertson I. 2016. Comparison of Five Expression Vectors for the Ha Gene in Constructing a DNA Vaccine for H6N2 Influenza Virus in Chickens. Advances in Microbiology 06:310-319.
80.Sharma JM, Kim IJ, Rautenschlein S, Yeh HY. 2000. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol 24: 223-35.
81.Shen S, Mahadevappa G, Oh HL, Wee BY, Choi YW, Hwang LA, Lim SG, Hong W, Lal SK, Tan YJ. 2008. Comparing the antibody responses against recombinant hemagglutinin proteins of avian influenza A (H5N1) virus expressed in insect cells and bacteria. Journal of medical virology 80:1972-1983.
82.Singh J, Banga HS, Brar RS, Singh ND, Sodhi S, Leishangthem GD. 2015. Histopathological and immunohistochemical diagnosis of infectious bursal disease in poultry birds. Veterinary world 8:1331-1339.
83.Srivastava V, Yang Z, Hung IF, Xu J, Zheng B, Zhang MY. 2013. Identification of dominant antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin antigen of pandemic H1N1 influenza virus. J Virol 87:5831-5840.
84.Stachyra A, Redkiewicz P, Kosson P, Protasiuk A, Gora-Sochacka A, Kudla G, Sirko A. 2016. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. J Virol 13:143.
85.Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature structural & molecular biology 16:265-273.
86.Tonegawa K, Nobusawa E, Nakajima K, Kato T, Kutsuna T, Kuroda K, Shibata T, Harada Y, Nakamura A, Itoh M. 2003. Analysis of epitope recognition of antibodies induced by DNA immunization against hemagglutinin protein of influenza A virus. Vaccine 21:3118-3125.
87.Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A, et a. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745.
88.Van den Berg TP, Eterradossi N, Toquin D, Meulemans G. 2000. Infectious bursal disease (Gumboro disease). Rev Sci Tech 19: 509-43.
89.Vartak A, Sucheck SJ. 2016. Recent Advances in Subunit Vaccine Carriers. Vaccines 4:1-18.
90.Vreede FT, Brownlee GG. 2007. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol 81:2196-2204.
91.Vreede FT, Gifford H, Brownlee GG. 2008. Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol 82:6902-6910.
92.Wang CY, Luo YL, Chen YT, Li SK, Lin CH, Hsieh YC, Liu HJ. 2007. The cleavage of the hemagglutinin protein of H5N2 avian influenza virus in yeast. Journal of virological methods 146:293-297.
93.Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol Rev 56:152-79.
94.Wei Y, Li J, Zheng J, Xu H, Li L, Yu L. 2006. Genetic reassortment of infectious bursal disease virus in nature. Biochemical and Biophysical Research Communications 350:277-287.
95.World Health Organization. 2005. Recommended laboratory tests to identify avian influenza A virus in specimens from humans. WHO Geneva, 2005, from the World Wide Web: http://www.who.int/influenza/resources/documents/RecAIlabtestsAug07.pdf
96.Wiley DC, Wilson IA, Skehel JJ. 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373-378.
97.World Health Organization. 2002. Dept. of Epidemic and Pandemic Alert and Response. WHO manual on animal influenza diagnosis and surveillance. 1st ed. Geneva: World Health Organization.
98.Xie QM, Ji J, Du LQ, Cao YC, Wei L, Xue CY, Qin JP, Ma JY, Bi YZ. 2009. Preparation and immune activity analysis of H5N1 subtype avian influenza virus recombinant protein-based vaccine. Poultry science 88:1608-1615.
99.Yu Z, Cheng K, Xin Y, Sun W, Li X, Huang J, Zhang K, Yang S, Wang T, Zheng X, Wang H, Hua Y, Chai H, Qin C, Qian J, Gao Y, Xia X. 2014. Multiple amino acid substitutions involved in the adaptation of H6N1 avian influenza virus in mice. Veterinary microbiology 174:316-321.
100.Yuan J, Zhang L, Kan X, Jiang L, Yang J, Guo Z, Ren Q. 2013. Origin and molecular characteristics of a novel 2013 avian influenza A(H6N1) virus causing human infection in Taiwan. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 57:1367-1368.
101.Zhang X, Chen S, Yang D, Wang X, Zhu J, Peng D, Liu X. 2015. Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus. The Journal of general virology 96:1248-1257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔