跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖冠儒
研究生(外文):Guan-Ru Liao
論文名稱:羊傳染性化膿性病毒OV20.0蛋白與細胞核糖核酸腺苷去氨酶一型之交互作用
論文名稱(外文):Interaction of orf virus OV20.0 and adenosine deaminases acting on RNA 1
指導教授:徐維莉
口試委員:劉浩屏劉新梧郭瑞琳
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:微生物暨公共衛生學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:76
中文關鍵詞:羊傳染性化膿性病毒宿主–病原交互作用
外文關鍵詞:orf virusOV20.0ADAR1host–pathogen interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Orf virus (ORFV) OV20.0 is an antagonist of interferon (IFN). It inhibits activation of protein kinase (PKR), which suppresses viral protein synthesis during infection. OV20.0 and PKR harbor dsRNA binding domain (RBD) and are classified as dsRNA binding proteins (DRBP). It has been proposed that DRBPs regulate cell physiology by formation protein dimer. Adenosine deaminases acting on RNA 1 (ADAR1) catalyzes deamination of adenosine (A) to produce inosine (I) in dsRNA substrate. Due to its nature of dsRNA binding, we postulated that OV20.0 possibly interacts with ADAR1. In the present study, the association of OV20.0 with ADAR1 was evidenced for the first time. Interestingly, ADAR1 translocated and colocalized with N terminal truncated OV20.0 in cytoplasm. Among RBDs, several residues are highly conserved and that may directly contribute to dsRNA binding. We found the OV20.0 with lysine 160 residue replaced with alanine in its RBD has completely different features from wild type in many aspects of counteracting host innate immunity, including loss of binding ability with dsRNA and ADAR1. Subsequently, whether the OV20.0 interaction interferes with ADAR1’s A-to-I editing was accessed. It turned out that OV20.0 is a suppressor of deaminase activity of ADAR1. During virus infection, ADAR1 acts as an inhibitor of PKR. Increasing ADAR1 further enhanced inhibition of PKR activation mediated by OV20.0. Moreover, ADAR1 plays a proviral role in ORFV infection, possibly via inhibiting PKR activation. These observations indicate ADAR1 is a novel OV20.0 interacting partner, and shed light on the hierarchy of such multimolecular interaction and the potential effect on their mutual functions.
Contents
中文摘要 i
Abstract ii
Introduction 1
1. Orf virus 1
2. E3 proteins and Interferon (IFN) 2
3. The dsRNA dependent protein kinase (PKR) 3
4. OV20.0 and PKR 4
5. OV20.0 and other DRBP 6
6. ADAR1 7
7. NF90 8
8. Aims of the study 9
Material and method 11
1. Cloning procedure 11
1.1 General procedure 11
1.2 ADAR1 constructs 11
1.3 OV20.0 constructs 12
1.4 mCherry based gluR-B R/G reporter construct 14
2. Cell culture 14
3. Virus and infection 14
4. Transfection 15
5. FLAG-immunoprecipitation (IP) 15
6. dsRNA (polyI:C) pull down 16
7. Induction of PKR phosphorylation 16
8. Western blot analysis 16
9. Immunofluorescence assay (IFA) 17
Result 18
1. OV20.0 interacts with ADAR1, NF90, and NF45 via its RBD 18
2. ADAR1 interacts with OV20.0 via its RBDs 19
3. dsRNA is not necessary for the interaction of OV20.0 and ADAR1 20
4. OV20.0-GFP colocalizes with ADAR1 20
5. Key residues reserved on the RBD regions of OV20.0, PKR, PACT and ADAR1 21
6. K160A failed to interact with PKR and ADAR1, and suppress RNAi. 22
7. OV20.0 forms dimer via RBD and K160 is not the key residue for dimerization 23
8. OV20.0 disrupts ADAR1 A to I editing 24
9. ADAR1 plays a proviral role in ORFV infection 25
Discussion 27
1. OV20.0 interacts with ADAR1 27
2. Cellular distribution of OV20.0 and ADAR1 29
3. Highly conserved residues in RBDs 30
4. Functional assay of K160A mutant. 31
5. Modulation of RNAi by OV20.0 and ADAR1 32
6. OV20.0 disrupts A-to-I editing 33
7. ADAR1 and PKR and OV20.0 35
Reference 37
Figures 56
Appendix 72
Primer list 72
ADAR1 constructs 72
OV20.0 constructs 73
RNAi experiment 74
mCherry based R/G reporter 74
Antibodies used in this study 75

Figure Contents
Fig 1. Interaction of ORFV OV20.0 with cellular proteins. 57
Fig 2. Region of ADAR1 involved in OV20.0 interaction. 59
Fig 3. Cellular distribution of OV20.0 and ADAR1. 61
Fig 4. Key residues involved in dsRNA binding activity of OV20.0. 63
Fig 5. K160 is a key residue of OV20.0 for counteracting host defense system. 66
Fig 6. OV20.0 interferes with ADAR1’s A-to-I editing. 68
Fig 7. ADAR1 plays a proviral role upon ORFV infection. 71
1.Haig DM, McInnes CJ. 2002. Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus Res 88:3-16.
2.Delhon G, Tulman ER, Afonso CL, Lu Z, de la Concha-Bermejillo A, Lehmkuhl HD, Piccone ME, Kutish GF, Rock DL. 2004. Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. J Virol 78:168-177.
3.Mercer AA, Ueda N, Friederichs SM, Hofmann K, Fraser KM, Bateman T, Fleming SB. 2006. Comparative analysis of genome sequences of three isolates of Orf virus reveals unexpected sequence variation. Virus Res 116:146-158.
4.Nandi S, De UK, Chowdhury S. 2011. Current status of contagious ecthyma or orf disease in goat and sheep-A global perspective. Small Ruminant Research 96:73-82.
5.Sallusto F, Baggiolini M. 2008. Chemokines and leukocyte traffic. Nature Immunology 9:949-952.
6.Alcami A, Saraiva M. 2009. Chemokine Binding Proteins Encoded by Pathogens. Pathogen-Derived Immunomodulatory Molecules 666:167-179.
7.Deane D, McInnes CJ, Percival A, Wood A, Thomson J, Lear A, Gilray J, Fleming S, Mercer A, Haig D. 2000. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. Journal of Virology 74:1313-1320.
8.Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA. 2003. Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. Journal of Biological Chemistry 278:38004-38014.
9.Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ. 1994. Homologs of Vascular Endothelial Growth-Factor Are Encoded by the Poxvirus Orf Virus. Journal of Virology 68:84-92.
10.Haig DM, McInnes CJ, Thomson J, Wood A, Bunyan K, Mercer A. 1998. The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93:335-340.
11.Broyles SS. 2003. Vaccinia virus transcription. J Gen Virol 84:2293-2303.
12.Beattie E, Kauffman EB, Martinez H, Perkus ME, Jacobs BL, Paoletti E, Tartaglia J. 1996. Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12:89-94.
13.Brubaker SW, Bonham KS, Zanoni I, Kagan JC. 2015. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257-290.
14.Wolferstatter M, Schweneker M, Spath M, Lukassen S, Klingenberg M, Brinkmann K, Wielert U, Lauterbach H, Hochrein H, Chaplin P, Suter M, Hausmann J. 2014. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses. J Virol 88:14396-14411.
15.Bratke KA, McLysaght A, Rothenburg S. 2013. A survey of host range genes in poxvirus genomes. Infect Genet Evol 14:406-425.
16.Kim YG, Muralinath M, Brandt T, Pearcy M, Hauns K, Lowenhaupt K, Jacobs BL, Rich A. 2003. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci U S A 100:6974-6979.
17.Haller SL, Peng C, McFadden G, Rothenburg S. 2014. Poxviruses and the evolution of host range and virulence. Infect Genet Evol 21:15-40.
18.Chang HW, Jacobs BL. 1993. Identification of a Conserved Motif That Is Necessary for Binding of the Vaccinia Virus E3l Gene-Products to Double-Stranded-Rna. Virology 194:537-547.
19.Kwon JA, Rich A. 2005. Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc Natl Acad Sci U S A 102:12759-12764.
20.Chang HW, Watson JC, Jacobs BL. 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825-4829.
21.Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, Dever TE. 2005. Mechanistic link between PKR dimerization, autophosphorylation, and elF2 alpha substrate recognition. Cell 122:901-913.
22.Dar AC, Dever TE, Sicheri F. 2005. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122:887-900.
23.Samuel CE. 1979. Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci U S A 76:600-604.
24.Kumar A, Haque J, Lacoste J, Hiscott J, Williams BR. 1994. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A 91:6288-6292.
25.McMillan NA, Chun RF, Siderovski DP, Galabru J, Toone WM, Samuel CE, Mak TW, Hovanessian AG, Jeang KT, Williams BR. 1995. HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase, PKR. Virology 213:413-424.
26.Langland JO, Kao PN, Jacobs BL. 1999. Nuclear factor-90 of activated T-cells: A double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR. Biochemistry 38:6361-6368.
27.Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC. 1999. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 274:20432-20437.
28.Gale M, Jr., Tan SL, Katze MG. 2000. Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64:239-280.
29.Friedrich I, Ben-Bassat H, Levitzki A. 2005. Activation of dsRNA dependent protein kinase PKR in Karpas299 does not lead to cell death. Cancer Biol Ther 4:734-739.
30.Barber GN. 2005. The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ 12:563-570.
31.Yeung MC, Liu J, Lau AS. 1996. An essential role for the interferon-inducible, double-stranded RNA-activated protein kinase PKR in the tumor necrosis factor-induced apoptosis in U937 cells. Proceedings of the National Academy of Sciences of the United States of America 93:12451-12455.
32.Myskiw C, Arsenio J, van Bruggen R, Deschambault Y, Cao JX. 2009. Vaccinia Virus E3 Suppresses Expression of Diverse Cytokines through Inhibition of the PKR, NF-kappa B, and IRF3 Pathways. Journal of Virology 83:6757-6768.
33.Patel RC, Sen GC. 1998. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 17:4379-4390.
34.Patel CV, Handy I, Goldsmith T, Patel RC. 2000. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 275:37993-37998.
35.Srivastava SP, Kumar KU, Kaufman RJ. 1998. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. Journal of Biological Chemistry 273:2416-2423.
36.Peters GA, Dickerman B, Sen GC. 2009. Biochemical analysis of PKR activation by PACT. Biochemistry 48:7441-7447.
37.Li S, Peters GA, Ding K, Zhang X, Qin J, Sen GC. 2006. Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci U S A 103:10005-10010.
38.Peters GA, Li SD, Sen GC. 2006. Phosphorylation of specific serine residues in the PKR activation domain of PACT is essential for its ability to mediate apoptosis. Journal of Biological Chemistry 281:35129-35136.
39.Romano PR, Zhang F, Tan SL, Garcia-Barrio MT, Katze MG, Dever TE, Hinnebusch AG. 1998. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: Role of complex formation and the E3 N-terminal domain. Molecular and Cellular Biology 18:7304-7316.
40.Tseng YY, Lin FY, Cheng SF, Tscharke D, Chulakasian S, Chou CC, Liu YF, Chang WS, Wong ML, Hsu WL. 2015. Functional analysis of the short isoform of orf virus protein OV20.0. J Virol 89:4966-4979.
41.Tseng YY, Liao GR, Sen GC, Lin FY, Hsu WL. 2015. Regulation of PACT-Mediated Protein Kinase Activation by the OV20.0 Protein of Orf Virus. J Virol 89:11619-11629.
42.Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN. 2001. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. Journal of Biological Chemistry 276:32300-32312.
43.Harashima A, Pfeifer I, Elsby R, Konno H, Barber GN. 2009. NFAR-1 and NFAR-2 modulate translation and are required for efficient host defense. Cytokine 48:89-90.
44.Pfeifer I, Elsby R, Fernandez M, Faria PA, Nussenzveig DR, Lossos IS, Fontoura BMA, Martin WD, Barber GN. 2008. NFAR-1 and-2 modulate translation and are required for efficient host defense. Proceedings of the National Academy of Sciences of the United States of America 105:4173-4178.
45.Bevilacqua PC, Cech TR. 1996. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35:9983-9994.
46.Bycroft M, Grunert S, Murzin AG, Proctor M, St Johnston D. 1995. Nmr Solution Structure of a Dsrna Binding Domain from Drosophila Staufen Protein Reveals Homology to the N-Terminal Domain of Ribosomal-Protein S5. Embo Journal 14:3563-3571.
47.Chang KY, Ramos A. 2005. The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272:2109-2117.
48.Stefl R, Skrisovska L, Allain FH. 2005. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6:33-38.
49.Chen Y, Varani G. 2005. Protein families and RNA recognition. FEBS J 272:2088-2097.
50.Hitti EG, Sallacz NB, Schoft VK, Jantsch MF. 2004. Oligomerization activity of a double-stranded RNA-binding domain. Febs Letters 574:25-30.
51.Patterson JB, Samuel CE. 1995. Expression and Regulation by Interferon of a Double-Stranded-Rna-Specific Adenosine-Deaminase from Human-Cells - Evidence for 2 Forms of the Deaminase. Molecular and Cellular Biology 15:5376-5388.
52.Liu Y, George CX, Patterson JB, Samuel CE. 1997. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem 272:4419-4428.
53.McMillan NA, Carpick BW, Hollis B, Toone WM, Zamanian-Daryoush M, Williams BR. 1995. Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J Biol Chem 270:2601-2606.
54.Patel RC, Stanton P, Sen GC. 1996. Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. J Biol Chem 271:25657-25663.
55.Ryter JM, Schultz SC. 1998. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17:7505-7513.
56.Barraud P, Heale BS, O'Connell MA, Allain FH. 2012. Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA. Biochimie 94:1499-1509.
57.Ramos A, Grunert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, St Johnston D, Varani G. 2000. RNA recognition by a Staufen double-stranded RNA-binding domain. Embo Journal 19:997-1009.
58.Masliah G, Barraud P, Allain FHT. 2013. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cellular and Molecular Life Sciences 70:1875-1895.
59.George CX, Samuel CE. 1999. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proceedings of the National Academy of Sciences of the United States of America 96:4621-4626.
60.Strehblow A, Hallegger M, Jantsch MF. 2002. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Molecular Biology of the Cell 13:3822-3835.
61.Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. 1999. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841-1845.
62.Fritz J, Strehblow A, Taschner A, Schopoff S, Pasierbek P, Jantsch MF. 2009. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol 29:1487-1497.
63.George CX, Samuel CE. 1999. Characterization of the 5'-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene 229:203-213.
64.Nishikura K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321-349.
65.Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. 1998. How cells respond to interferons. Annual Review of Biochemistry 67:227-264.
66.Kawakubo K, Samuel CE. 2000. Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene 258:165-172.
67.Placido D, Brown BA, 2nd, Lowenhaupt K, Rich A, Athanasiadis A. 2007. A left-handed RNA double helix bound by the Z alpha domain of the RNA-editing enzyme ADAR1. Structure 15:395-404.
68.Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. 2000. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755-767.
69.Bass BL. 2002. RNA editing by adenosine deaminases that act on RNA. Annual Review of Biochemistry 71:817-846.
70.Desterro JM, Keegan LP, Lafarga M, Berciano MT, O'Connell M, Carmo-Fonseca M. 2003. Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116:1805-1818.
71.Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB. 2004. The double-stranded-RNA-binding motif: Interference and much more. Nature Reviews Molecular Cell Biology 5:1013-1023.
72.Masliah G, Barraud P, Allain FH. 2013. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell Mol Life Sci 70:1875-1895.
73.Wang P, Song W, Mok BW, Zhao P, Qin K, Lai A, Smith GJ, Zhang J, Lin T, Guan Y, Chen H. 2009. Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein. J Virol 83:7850-7861.
74.Bass BL, Hurst SR, Singer JD. 1994. Binding-Properties of Newly Identified Xenopus Proteins Containing Dsrna-Binding Motifs. Current Biology 4:301-314.
75.Shabman RS, Leung DW, Johnson J, Glennon N, Gulcicek EE, Stone KL, Leung L, Hensley L, Amarasinghe GK, Basler CF. 2011. DRBP76 associates with Ebola virus VP35 and suppresses viral polymerase function. J Infect Dis 204 Suppl 3:S911-918.
76.Harashima A, Guettouche T, Barber GN. 2010. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev 24:2640-2653.
77.Merrill MK, Dobrikova EY, Gromeier M. 2006. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 80:3147-3156.
78.Merrill MK, Gromeier M. 2006. The double-stranded RNA binding protein 76 : NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. Journal of Virology 80:6936-6942.
79.Gomila RC, Martin GW, Gehrke L. 2011. NF90 Binds the Dengue Virus RNA 3 ' Terminus and Is a Positive Regulator of Dengue Virus Replication. Plos One 6.
80.Li Y, Belshan M. 2016. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression. Viruses 8.
81.Shin HJ, Kim SS, Cho YH, Lee SG, Rho HM. 2002. Host cell proteins binding to the encapsidation signal epsilon in hepatitis B virus RNA. Arch Virol 147:471-491.
82.Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A, Behrens SE. 2007. Nuclear factors are involved in hepatitis C virus RNA replication. RNA 13:1675-1692.
83.Li Y, Masaki T, Shimakami T, Lemon SM. 2014. hnRNP L and NF90 interact with hepatitis C virus 5'-terminal untranslated RNA and promote efficient replication. J Virol 88:7199-7209.
84.Shamanna RA, Hoque M, Pe'ery T, Mathews MB. 2013. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 32:5176-5185.
85.Wen X, Huang XF, Mok BWY, Chen YX, Zheng M, Lau SY, Wang P, Song WJ, Jin DY, Yuen KY, Chen HL. 2014. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. Journal of Immunology 192:3753-3764.
86.St Johnston D, Brown NH, Gall JG, Jantsch M. 1992. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A 89:10979-10983.
87.Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A. 1995. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J 14:3572-3584.
88.Davies MV, Elroy-Stein O, Jagus R, Moss B, Kaufman RJ. 1992. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 66:1943-1950.
89.Valente L, Nishikura K. 2007. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J Biol Chem 282:16054-16061.
90.Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, Tikoo A, Chauhan A. 2011. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 155:1-9.
91.Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, Brydon EW, Johnson KL, Garcia-Sastre A, Ball LA, Palese P, Ding SW. 2004. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 101:1350-1355.
92.Cao X, Zhou P, Zhang X, Zhu S, Zhong X, Xiao Q, Ding B, Li Y. 2005. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol 79:13018-13027.
93.Cao XS, Zhou P, Zhang XM, Zhu SF, Zhong XH, Xiao Q, Ding B, Li Y. 2005. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. Journal of Virology 79:13018-13027.
94.Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205-217.
95.Nishikura K, Yoo C, Kim U, Murray JM, Estes PA, Cash FE, Liebhaber SA. 1991. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J 10:3523-3532.
96.Barraud P, Allain FH. 2012. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 353:35-60.
97.Lehmann KA, Bass BL. 1999. The importance of internal loops within RNA substrates of ADAR1. Journal of Molecular Biology 291:1-13.
98.Yang S, Deng P, Zhu Z, Zhu J, Wang G, Zhang L, Chen AF, Wang T, Sarkar SN, Billiar TR, Wang Q. 2014. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol 193:3436-3445.
99.Nie Y, Hammond GL, Yang JH. 2007. Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J Virol 81:917-923.
100.Nie YZ, Hammond GL, Yang JH. 2007. Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. Journal of Virology 81:917-923.
101.Gallo A, Keegan LP, Ring GM, O'Connell MA. 2003. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. Embo Journal 22:3421-3430.
102.Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K, Iizasa H, Davuluri RV, Nishikura K. 2013. ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 153:575-589.
103.Nie YZ, Zhao QC, Su YJ, Yang JH. 2004. Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. Journal of Biological Chemistry 279:13249-13255.
104.Scott MS, Troshin PV, Barton GJ. 2011. NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. Bmc Bioinformatics 12.
105.Barraud P, Banerjee S, Mohamed WI, Jantsch MF, Allain FHT. 2014. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proceedings of the National Academy of Sciences of the United States of America 111:E1852-E1861.
106.Bycroft M, Grunert S, Murzin AG, Proctor M, St Johnston D. 1995. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J 14:3563-3571.
107.Kakumani PK, Ponia SS, Rajgokul KS, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. 2013. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor. Journal of Virology 87:8870-8883.
108.Li Y, Basavappa M, Lu J, Dong S, Cronkite DA, Prior JT, Reinecker HC, Hertzog P, Han Y, Li WX, Cheloufi S, Karginov FV, Ding SW, Jeffrey KL. 2016. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2:16250.
109.Jayachandran B, Hussain M, Asgari S. 2012. RNA Interference as a Cellular Defense Mechanism against the DNA Virus Baculovirus. Journal of Virology 86:13729-13734.
110.Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Tachibana M, Mizuguchi H. 2017. MicroRNA miR-27 Inhibits Adenovirus Infection by Suppressing the Expression of SNAP25 and TXN2. J Virol 91.
111.Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. 2007. The Ebola virus VP35 protein is a suppressor of RNA silencing. Plos Pathogens 3:794-803.
112.Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G. 2005. Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556-9565.
113.Cardenas WB, Loo YM, Gale M, Jr., Hartman AL, Kimberlin CR, Martinez-Sobrido L, Saphire EO, Basler CF. 2006. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80:5168-5178.
114.Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nature Reviews Molecular Cell Biology 17:83-96.
115.Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 17:83-96.
116.Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K. 2007. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8:763-769.
117.Yang WD, Chendrimada TP, Wang QD, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K. 2006. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular Biology 13:13-21.
118.Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. 2007. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137-1140.
119.Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, Wang S. 2012. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. Journal of Clinical Investigation 122:4059-4076.
120.Cenci C, Barzotti R, Galeano F, Corbelli S, Rota R, Massimi L, Di Rocco C, O'Connell MA, Gallo A. 2008. Down-regulation of RNA editing in pediatric astrocytomas - ADAR2 editing activity inhibits cell migration and proliferation. Journal of Biological Chemistry 283:7251-7260.
121.Liu Y, Wolff KC, Jacobs BL, Samuel CE. 2001. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology 289:378-387.
122.Liu Y, Samuel CE. 1996. Mechanism of interferon action: Functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-Specific adenosine deaminase. Journal of Virology 70:1961-1968.
123.de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, Chantier T, Tafforeau L, Mangeot PE, Ciancia C, Perrin-Cocon L, Bartenschlager R, Andre P, Lotteau V. 2013. The Interactomes of Influenza Virus NS1 and NS2 Proteins Identify New Host Factors and Provide Insights for ADAR1 Playing a Supportive Role in Virus Replication. Plos Pathogens 9.
124.Taylor DR, Puig M, Darnell MER, Mihalik K, Feinstone SM. 2005. New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. Journal of Virology 79:6291-6298.
125.Ko NL, Birlouez E, Wain-Hobson S, Mahieux R, Vartanian JP. 2012. Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1. J Gen Virol 93:2646-2651.
126.Gelinas JF, Clerzius G, Shaw E, Gatignol A. 2011. Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase. J Virol 85:8460-8466.
127.Pfaller CK, Li ZQ, George CX, Samuel CE. 2011. Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Current Opinion in Immunology 23:573-582.
128.Clerzius G, Gelinas JF, Daher A, Bonnet M, Meurs EF, Gatignol A. 2009. ADAR1 Interacts with PKR during Human Immunodeficiency Virus Infection of Lymphocytes and Contributes to Viral Replication. Journal of Virology 83:10119-10128.
129.Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. 2015. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity 43:933-944.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top