跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王瑜甄
研究生(外文):Yu-Chen Wang
論文名稱:以秀麗隱桿線蟲探討人類臨床Vibrio vulnificus分離株的毒力暨臨床感染個案之預後因子分析
論文名稱(外文):Using Caenorhabditis elegans as a Model to Study Virulence of Clinical Vibrio vulnificus Isolates and Analysis of Prognostic Factors of the Infected Cases
指導教授:張照勤張照勤引用關係
指導教授(外文):Chao-Chin Chang
口試委員:鄧景浩陳昌熙
口試委員(外文):Ching-Hao TengChang-Shi Chen
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:微生物暨公共衛生學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:秀麗隱桿線蟲創傷弧菌預後因子
外文關鍵詞:Caenorhabditis elegansVibrio vulnificusPrognostic Factors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
創傷弧菌為伺機性感染人類的病原體,透過傷口感染或食用汙染海鮮後引起胃腸道相關症狀,感染者可能造成嚴重皮膚損傷及敗血症,而引起敗血症的個案死亡率極高。臨床上病患感染後之臨床表現差異極大,是否因病原菌本身的毒力差異或是感染個案本身因子的影響值得探討。因此,瞭解菌株所攜帶的毒力因子及病人臨床預後因子對於此感染者的即時治療很重要。在本研究中,共收集了49株創傷弧菌臨床菌株及其相關人類臨床資料進行分析。為比較創傷弧菌的毒力,使用sek-1突變先天免疫缺陷秀麗隱桿線蟲作為活體(in-vivo)感染的試驗對象,各菌株透過PCR方法檢測創傷弧菌的重要毒力基因(包括vvhA、vcgC、16S rRNA type B、CPS1、PRXII、nanA、toxR及manllA),並且收集病例的臨床資料包括年齡、性別、發燒、肝病(肝炎或肝硬化)、糖尿病或脾腫大等臨床因子做為預後評估。在本研究中,發現所有的分離株皆攜帶vvhA、 vcgC、nanA、16S rRNA type B及manIIA基因。菌株中僅一株未帶有toxR基因,而所有菌株皆未帶有PRXII基因。73.5%菌株中被偵測出帶有CPS1基因,進一步經線蟲模式評估結果顯示帶有CPS1基因毒力有顯著毒力作用。所有菌株皆具vvpE基因,且在攜帶特異vvpE基因型的創傷弧菌分離株對秀麗隱桿線蟲生存具有顯著影響。進一步依人類感染後生存和死亡組別比較其感染菌株在線蟲感染模式結果,顯示統計學上顯著差異。在預後因子的評估中,肝病(肝炎或肝硬化)、糖尿病和脾腫大是與創傷弧菌感染後是否存活之顯著相關因子。進一步依個案年齡、性別、肝病(肝炎或肝硬化)、糖尿病及脾腫大因子,以邏輯式回歸分析後建構個案臨床指標,指標值大於-0.40者對死亡之預測具有83%敏感度及86%特異度。本研究具體的結論為台灣臨床創傷弧菌具有相似的毒力特徵,因此對於感染病人的存活預後結果,台灣人類臨床因素相較於菌株毒力本身的毒力作用更為重要。
Vibrio vulnificus is an opportunistic human pathogen, which causes wound infections or gastrointestinal-related symptoms, but may potentially result in septicaemia with high case-fatality rate. Therefore, it is of major importance to know if the bacteria carrying certain virulence factors could be more pathogenic to humans and what the prognostic factors are in human clinical cases. In this study, a total of 49 V. vulnificus isolates and their relevant human clinical records were collected for analysis. To compare virulence of V. vulnificus, Caenorhabditis elegans sek-1 mutant was applied as an in-vivo model. Important virulence genes of V. vulnificus were detected by PCR. Human factors regarding age, sex, fever, underlying conditions such as liver diseases (hepatitis or cirrhosis), diabetes and/or splenomegaly, as well as survival condition after the infection were collected for studying prognosis. In our study, it was found that all the isolates carry virulence genes of vvhA, vcgC, nanA, 16S rRNA type B and manIIA. Only one isolate was PCR negative for toxR and none of the isolates carried PRXII gene. 73.5% of the isolates carried CPS1 gene, and it was found significant effect on C. elegans survival while comparing the CPS1-positive isolates to the CPS1-negative ones. V. vulnificus isolates carrying a specific genotype of vvpE, were significantly influence C. elegans survival. There is significant difference of C. elegans survival after V. vulnificus challenge between the human survival and death groups. For prognosis evaluation, liver disease (hepatitis or cirrhosis), diabetes and splenomegaly were significant factors associated with human survival after the infection. Using conditions of age, sex, liver disease, diabetes and splenomegaly to construct the clinical index (CLI) by logistic regression analysis, it showed that the individual with CLI greater than -0.40 was with sensitivity of 83% and specificity of 86% to determine death. The overall results suggest that clinical V. vulnificus isolates in Taiwan are generally with similar virulence profiles, but human clinical factors are more important than V. vulnificus virulence factors to determine human survival.
目次
第一章 文獻探討 1
第一節 創傷弧菌的介紹 1
第二節 創傷弧菌預後因子 2
第三節 創傷弧菌的毒力因子 3
一、 細胞毒素/溶血素基因(cytolyxin / hemolysin gene; vvhA gene) 3
二、 金屬蛋白酶 (metalloprotease; VvpE)基因 4
三、 毒力相關基因(virulence-correlated gene; vcg gene) 4
四、 莢膜多醣體(capsular polysaccharide; CPS)相關基因 4
五、 nanA基因 5
六、 toxR 基因 5
七、 16S rRNA 基因 5
八、 manll A 基因 5
第四節 以秀麗隱桿線蟲為實驗動物模式進行病原毒力評估 6
第五節 秀麗隱桿線蟲先天性免疫 7
第六節 研究目的 8
第二章 材料與方法 9
第一節 樣本來源 9
第二節 菌株來源及培養 9
一、 細菌培養 9
二、 菌株保存 11
三、 菌株DNA萃取 11
四、 毒力基因之聚合酶連鎖反應(Polymerase chain reaction; PCR)檢測 12
第三節 秀麗隱桿線蟲存活曲線測定 14
一、 秀麗隱桿線蟲線蟲感染 14
二、 秀麗隱桿線蟲感染V. vulnificus存活率評估 14
第四節 線蟲培養基及溶液配置 15
一、 NG agar 15
二、 ENG agar 15
三、 M9 buffer 16
第五節 統計分析 16
一、 線蟲存活分析 16
二、 預後因子評估分析 16
第三章 結果 18
第一節 V. vulnificus各毒力基因檢測結果 18
第二節 V. vulnificus vvpE基因序列比對與演化樹狀圖建構 18
第三節 秀麗隱桿線蟲全程感染V. vulnificus之毒力測試結果評估 19
一、 以全程V. vulnificus感染秀麗隱桿線蟲毒力測試結果比較V. vulnificus臨床感染者於存活與死亡組別之差異 19
二、 CPS1毒力基因於感染秀麗隱桿線蟲後之毒力測試比較 19
三、 不同vvpE genogroup之V. vulnificus以全程感染秀麗隱桿線蟲之方式比較存活差異 19
第四節 秀麗隱桿線蟲單次感染V. vulnificus之毒力測試評估 20
一、 以單次V. vulnificus感染秀麗隱桿線蟲毒力測試結果比較V. vulnificus臨床感染者於存活與死亡組別之差異 20
二、 CPS1毒力基因於感染秀麗隱桿線蟲後之毒力測試比較 20
三、 不同vvpE genogroup之V. vulnificus以單次感染秀麗隱桿線蟲之方式比較存活差異 21
第五節 V. vulnificus感染個案之預後因子分析 21
一、 預後因子單變項分析 21
二、 臨床預後因子多變項邏輯式回歸分析 21
三、 臨床預後因子ROC曲線分析 22
第四章 討 論 23
結論 28
參考文獻 29
參考文獻
1.O'Neill, K.R., S.H. Jones, and D.J. Grimes, Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol, 1992. 58(10): p. 3257-62.
2.Strom, M.S. and R.N. Paranjpye, Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000. 2(2): p. 177-88.
3.Ellington, E.P., J.G. Wood, and E.O. Hill, Disease caused by a marine vibrio-Vibrio vulnificus. N Engl J Med, 1982. 307(26): p. 1642.
4.Gulig, P.A., K.L. Bourdage, and A.M. Starks, Molecular Pathogenesis of Vibrio vulnificus. J Microbiol, 2005. 43 Spec No: p. 118-31.
5.Thompson, F.L., K.E. Klose, and A. Group, Vibrio2005: the First International Conference on the Biology of Vibrios. J Bacteriol, 2006. 188(13): p. 4592-6.
6.Biosca, E.G., et al., Phenotypic and genotypic characterization of Vibrio vulnificus: proposal for the substitution of the subspecific taxon biotype for serovar. Appl Environ Microbiol, 1997. 63(4): p. 1460-6.
7.Biosca, E.G., et al., Comparative study of biological properties and electrophoretic characteristics of lipopolysaccharide from eel-virulent and eel-A virulent Vibrio vulnificus strains. Appl Environ Microbiol, 1999. 65(2): p. 856-8.
8.Bisharat, N., et al., Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet, 1999. 354(9188): p. 1421-4.
9.Bisharat, N. and R. Raz, Vibrio infection in Israel due to changes in fish marketing. Lancet, 1996. 348(9041): p. 1585-6.
10.Zaidenstein, R., et al., Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg Infect Dis, 2008. 14(12): p. 1875-82.
11.Kim, M.S. and H.D. Jeong, Development of 16S rRNA targeted PCR methods for the detection and differentiation of Vibrio vulnificus in marine environments. Aquaculture, 2001. 193(3–4): p. 199-211.
12.Nilsson, W.B., et al., Sequence polymorphism of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence. J Clin Microbiol, 2003. 41(1): p. 442-6.
13.Gonzalez-Escalona, N., L.A. Jaykus, and A. DePaola, Typing of Vibrio vulnificus strains by variability in their 16S-23S rRNA intergenic spacer regions. Foodborne Pathog Dis, 2007. 4(3): p. 327-37.
14.Arias, C.R., et al., Intraspecific Differentiation of Vibrio vulnificus Biotypes by Amplified Fragment Length Polymorphism and Ribotyping. Appl Environ Microbiol, 1997. 63(7): p. 2600-6.
15.Hoi, L., et al., Occurrence of Vibrio vulnificus biotypes in Danish marine environments. Appl Environ Microbiol, 1998. 64(1): p. 7-13.
16.Tacket, C.O., F. Brenner, and P.A. Blake, Clinical features and an epidemiological study of Vibrio vulnificus infections. J Infect Dis, 1984. 149(4): p. 558-61.
17.Yuan, C.Y., et al., Septicemia and gangrenous change of the legs caused by marine vibrio, V. vulnificus--report of a case. Taiwan Yi Xue Hui Za Zhi, 1987. 86(4): p. 448-51.
18.Chagla, A.H., et al., Septicaemia caused by Vibrio vulnificus. J Infect, 1988. 17(2): p. 135-8.
19.Hlady, W.G. and K.C. Klontz, The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis, 1996. 173(5): p. 1176-83.
20.Shapiro, R.L., et al., The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988-1996. Vibrio Working Group. J Infect Dis, 1998. 178(3): p. 752-9.
21.Bullen, J.J., et al., Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch Intern Med, 1991. 151(8): p. 1606-9.
22.Chong, Y., et al., Vibrio vulnificus septicemia in a patient with liver cirrhosis. Yonsei Med J, 1982. 23(2): p. 146-52.
23.Hotta, S., et al., Fatal septicemia of Vibrio vulnificus in a patient with chronic hepatitis. Nihon Shokakibyo Gakkai Zasshi, 1987. 84(12): p. 2731-4.
24.Wright, A.C., L.M. Simpson, and J.D. Oliver, Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun, 1981. 34(2): p. 503-7.
25.Chuang, Y.C., et al., Vibrio vulnificus infection in Taiwan: report of 28 cases and review of clinical manifestations and treatment. Clin Infect Dis, 1992. 15(2): p. 271-6.
26.Hsueh, P.R., et al., Vibrio vulnificus in Taiwan. Emerg Infect Dis, 2004. 10(8): p. 1363-8.
27.Chou, T.N., et al., Prognostic factors for primary septicemia and wound infection caused by Vibrio vulnificus. Am J Emerg Med, 2010. 28(4): p. 424-31.
28.Chen, S.C., et al., Clinical outcomes and prognostic factors for patients with Vibrio vulnificus infections requiring intensive care: a 10-yr retrospective study. Crit Care Med, 2010. 38(10): p. 1984-90.
29.Knaus, W.A., et al., APACHE II: a severity of disease classification system. Crit Care Med, 1985. 13(10): p. 818-29.
30.Shapiro, N.I., et al., Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule. Crit Care Med, 2003. 31(3): p. 670-5.
31.Ho, K.M., et al., Combining multiple comorbidities with Acute Physiology Score to predict hospital mortality of critically ill patients: a linked data cohort study. Anaesthesia, 2007. 62(11): p. 1095-100.
32.Quach, S., et al., A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res, 2009. 9: p. 129.
33.Halpern, N.A. and S.M. Pastores, Critical care medicine in the United States 2000-2005: an analysis of bed numbers, occupancy rates, payer mix, and costs. Crit Care Med, 2010. 38(1): p. 65-71.
34.Gray, L.D. and A.S. Kreger, Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. Infect Immun, 1985. 48(1): p. 62-72.
35.Kreger, A. and D. Lockwood, Detection of extracellular toxin(s) produced by Vibrio vulnificus. Infect Immun, 1981. 33(2): p. 583-90.
36.Kothary, M.H. and A.S. Kreger, Purification and characterization of an elastolytic protease of Vibrio vulnificus. J Gen Microbiol, 1987. 133(7): p. 1783-91.
37.Simpson, L.M., et al., Correlation between virulence and colony morphology in Vibrio vulnificus. Infect Immun, 1987. 55(1): p. 269-72.
38.Wright, A.C., et al., Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun, 1990. 58(6): p. 1769-73.
39.Han, F. and B. Ge, Multiplex PCR assays for simultaneous detection and characterization of Vibrio vulnificus strains. Lett Appl Microbiol, 2010. 51(2): p. 234-40.
40.Bier, N., S. Diescher, and E. Strauch, Multiplex PCR for detection of virulence markers of Vibrio vulnificus. Lett Appl Microbiol, 2015. 60(5): p. 414-20.
41.Lee, S.E., et al., Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun, 2004. 324(1): p. 86-91.
42.Jeong, H.G. and K.J. Satchell, Additive function of Vibrio vulnificus MARTX(Vv) and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog, 2012. 8(3): p. e1002581.
43.Wright, A.C., et al., Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus. Infect Immun, 1985. 50(3): p. 922-4.
44.Miyoshi, S., et al., The C-terminal domain promotes the hemorrhagic damage caused by Vibrio vulnificus metalloprotease. Toxicon, 2001. 39(12): p. 1883-6.
45.Lee, S.J., et al., VvpE mediates the intestinal colonization of Vibrio vulnificus by the disruption of tight junctions. Int J Med Microbiol, 2016. 306(1): p. 10-9.
46.Gray, L.D. and A.S. Kreger, Mouse skin damage caused by cytolysin from Vibrio vulnificus and by V. vulnificus infection. J Infect Dis, 1987. 155(2): p. 236-41.
47.Rosche, T.M., Y. Yano, and J.D. Oliver, A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol Immunol, 2005. 49(4): p. 381-9.
48. Bogard, R.W. and J.D. Oliver, Role of iron in human serum resistance of the clinical and environmental Vibrio vulnificus genotypes. Appl Environ Microbiol, 2007. 73(23): p. 7501-5.
49.Yoshida, S., M. Ogawa, and Y. Mizuguchi, Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun, 1985. 47(2): p. 446-51.
50.Linkous, D.A. and J.D. Oliver, Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett, 1999. 174(2): p. 207-14.
51.Wright, A.C., et al., Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect Immun, 2001. 69(11): p. 6893-901.
52.Hayat, U., et al., Capsular types of Vibrio vulnificus: an analysis of strains from clinical and environmental sources. J Infect Dis, 1993. 168(3): p. 758-62.
53.Wright, A.C., et al., Differential expression of Vibrio vulnificus capsular polysaccharide. Infect Immun, 1999. 67(5): p. 2250-7.
54.Bush, C.A., et al., Classification of Vibrio vulnificus strains by the carbohydrate composition of their capsular polysaccharides. Anal Biochem, 1997. 250(2): p. 186-95.
55.Chatzidaki-Livanis, M., M.K. Jones, and A.C. Wright, Genetic variation in the Vibrio vulnificus group 1 capsular polysaccharide operon. J Bacteriol, 2006. 188(5): p. 1987-98.
56.Vimr, E.R., et al., Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev, 2004. 68(1): p. 132-53.
57.Jeong, H.G., et al., The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect Immun, 2009. 77(8): p. 3209-17.
58.Lin, Z., et al., Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol, 1993. 175(12): p. 3844-55.
59.Bauer, A. and L.M. Rorvik, A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett Appl Microbiol, 2007. 45(4): p. 371-5.
60.Kim, Y.B., et al., Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol, 1999. 37(4): p. 1173-7.
61.Takahashi, H., et al., Development of a quantitative real-time polymerase chain reaction targeted to the toxR for detection of Vibrio vulnificus. J Microbiol Methods, 2005. 61(1): p. 77-85.
62.Vickery, M.C., et al., A real-time PCR assay for the rapid determination of 16S rRNA genotype in Vibrio vulnificus. J Microbiol Methods, 2007. 68(2): p. 376-84.
63.Bier, N., et al., Genotypic Diversity and Virulence Characteristics of Clinical and Environmental Vibrio vulnificus Isolates from the Baltic Sea Region. Applied and Environmental Microbiology, 2013. 79(12): p. 3570-3581.
64.Drake, S.L., et al., Correlation of mannitol fermentation with virulence-associated genotypic characteristics in Vibrio vulnificus isolates from oysters and water samples in the Gulf of Mexico. Foodborne Pathog Dis, 2010. 7(1): p. 97-101.
65.Kim, H.J. and J.C. Cho, Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One, 2015. 10(11): p. e0142657.
66.Yokochi, N., et al., Distribution of virulence markers among Vibrio vulnificus isolates of clinical and environmental origin and regional characteristics in Japan. PLoS One, 2013. 8(1): p. e55219.
67.Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet, 2003. 4(5): p. 380-90.
68.Waterston, R. and J. Sulston, The genome of Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1995. 92(24): p. 10836-40.
69.Sulston, J.E., et al., The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol, 1983. 100(1): p. 64-119.
70.Consortium, C.e.S., Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 1998. 282(5396): p. 2012-8.
71.Markaki, M. and N. Tavernarakis, Modeling human diseases in Caenorhabditis elegans. Biotechnol J, 2010. 5(12): p. 1261-76.
72.Nakajima, Y.I. and E. Kuranaga, Caspase-dependent non-apoptotic processes in development. Cell Death Differ, 2017.
73.Battisti, J.M., et al., Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii. Innate Immun, 2017. 23(2): p. 111-127.
74.Zhi, L., et al., Molecular Control of Innate Immune Response to Pseudomonas aeruginosa Infection by Intestinal let-7 in Caenorhabditis elegans. PLoS Pathog, 2017. 13(1): p. e1006152.
75.Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
76.Darby, C., Interactions with microbial pathogens. WormBook, 2005: p. 1-15.
77.Kulshreshtha, G., et al., Red Seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down Regulate Virulence Factors of Salmonella Enteritidis and Induce Immune Responses in Caenorhabditis elegans. Front Microbiol, 2016. 7: p. 421.
78.Sifri, C.D., J. Begun, and F.M. Ausubel, The worm has turned--microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol, 2005. 13(3): p. 119-27.
79.Corsi, A.K., A biochemist's guide to Caenorhabditis elegans. Anal Biochem, 2006. 359(1): p. 1-17.
80.Alegado, R.A., et al., Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol, 2003. 5(7): p. 435-44.
81.Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol, 2010. 10(1): p. 47-58.
82.Kim, D.H., et al., A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science, 2002. 297(5581): p. 623-6.
83.Shivers, R.P., et al., Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host Microbe, 2009. 6(4): p. 321-30.
84.Pukkila-Worley, R., F.M. Ausubel, and E. Mylonakis, Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog, 2011. 7(6): p. e1002074.
85.Papp, D., P. Csermely, and C. Soti, A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog, 2012. 8(4): p. e1002673.
86.Estes, K.A., et al., bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2153-8.
87.Garsin, D.A., et al., Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science, 2003. 300(5627): p. 1921.
88.Evans, E.A., T. Kawli, and M.W. Tan, Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog, 2008. 4(10): p. e1000175.
89.Troemel, E.R., et al., p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet, 2006. 2(11): p. e183.
90.Johnson, G.L. and R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298(5600): p. 1911-2.
91.Kyriakis, J.M. and J. Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev, 2012. 92(2): p. 689-737.
92.Millet, A.C. and J.J. Ewbank, Immunity in Caenorhabditis elegans. Curr Opin Immunol, 2004. 16(1): p. 4-9.
93.Couillault, C., et al., TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol, 2004. 5(5): p. 488-94.
94.Liberati, N.T., et al., Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad Sci U S A, 2004. 101(17): p. 6593-8.
95.Yu, W., et al., Clinical features and treatment of patients with Vibrio vulnificus infection. Int J Infect Dis, 2017. 59: p. 1-6.
96.Litwin, C.M., T.W. Rayback, and J. Skinner, Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun, 1996. 64(7): p. 2834-8.
97.Roh, J.B., et al., Transcriptional regulatory cascade for elastase production in Vibrio vulnificus: LuxO activates luxT expression and LuxT represses smcR expression. J Biol Chem, 2006. 281(46): p. 34775-84.
98.Jeong, K.C., et al., Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infect Immun, 2000. 68(9): p. 5096-106.
99.Ha, C., et al., Quorum sensing-dependent metalloprotease VvpE is important in the virulence of Vibrio vulnificus to invertebrates. Microb Pathog, 2014. 71-72: p. 8-14.
100.Liu, J.W., et al., Prognostic factors and antibiotics in Vibrio vulnificus septicemia. Arch Intern Med, 2006. 166(19): p. 2117-23.
101.Lee, Y.C., et al., Prognostic factor of mortality and its clinical implications in patients with necrotizing fasciitis caused by Vibrio vulnificus. Eur J Clin Microbiol Infect Dis, 2014. 33(6): p. 1011-8.
102.Kashimoto, T., et al., Vibrio vulnificus detected in the spleen leads to fatal outcome in a mouse oral infection model. FEMS Microbiol Lett, 2015. 362(7).
103.Bogard, R.W. and J.D. Oliver, Role of iron in human serum resistance of the clinical and environmental Vibrio vulnificus genotypes. Appl Environ Microbiol, 2007. 73(23): p. 7501-5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top