|
1.Alvarez, K. and H. Nakajima, Metallic scaffolds for bone regeneration. Materials, 2009. 2(3): p. 790-832. 2.Hollister, S.J., Porous scaffold design for tissue engineering. Nature materials, 2005. 4(7): p. 518-524. 3.Sachlos, E. and J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003. 5(29): p. 39-40. 4.Kruth, J.P., et al., Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004. 149(1-3): p. 616-622. 5.Van Bael, S., et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater, 2012. 8(7): p. 2824-2834. 6.Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543. 7.Habibovic, P., et al., Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005. 26(1): p. 23-36. 8.Kim, J. and J.O. Hollinger, Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells. Biomed Mater, 2012. 7(4): p. 045008. 9.Kim, H.-W., et al., Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials, 2003. 24(19): p. 3277-3284. 10.Yang, H.S., et al., Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery. Tissue Eng Part A, 2011. 17(17-18): p. 2153-2164. 11.Turner, T.M., et al., A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. The Journal of Bone & Joint Surgery, 1986. 68(9): p. 1396-1409. 12.Surin, H.B.V. Stress shielding effect of the shaft component. 2005; Available from: http://www.bananarepublican.info/Stress_shielding.htm. 13.Doorn, P.F., et al., Tissue reaction to metal on metal total hip prostheses. Clinical orthopaedics and related research, 1996. 329: p. S187-S205. 14.Abu-Amer, Y., I. Darwech, and J.C. Clohisy, Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther, 2007. 9 Suppl 1: p. S6. 15.Daculsi, G., et al., Current state of the art of biphasic calcium phosphate bioceramics. Journal of Materials Science: Materials in Medicine, 2003. 14(3): p. 195-200. 16.Jung Park, et al., TiO2Nanotube Surfaces: 15 nm-An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. Small, 2009. 5(6): p. 666-671. 17.Jung Park, et al., Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate. Nano Lett., 2007. 7(6): p. 1686-1691. 18.Van Bael, S., et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 2012. 8(7): p. 2824-2834. 19.Wang, L., et al., Fabrication of Highly Ordered TiO(2) Nanotube Arrays via Anodization of Ti-6Al-4V Alloy Sheet. Journal of Nanoscience and Nanotechnology, 2010. 10(12): p. 8312-8321. 20.Taniguchi, N., et al., Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C Mater Biol Appl, 2016. 59: p. 690-701. 21.Lin, S.P., et al., Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. ACS Appl Mater Interfaces, 2014. 6(15): p. 12071-82. 22.Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-2915. 23.Ragamouni, S., et al., Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants. Acta Histochem, 2013. 115(7): p. 748-756. 24.Minagar, S., et al., A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater, 2012. 8(8): p. 2875-2888. 25.Park, I.S., H.J. Oh, and T.S. Bae, Bioactivity and generation of anodized nanotubular TiO2 layer of Ti–6Al–4V alloy in glycerol solution. Thin Solid Films, 2013. 548: p. 292-298. 26.Macak, J.M., et al., Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl, 2005. 44(45): p. 7463-7465. 27.Mapara, M., B.S. Thomas, and K.M. Bhat, Rabbit as an animal model for experimental research. Dent Res J (Isfahan), 2012. 9(1): p. 111-118.
|