(3.235.108.188) 您好!臺灣時間:2021/02/26 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江冠瑩
研究生(外文):Kuan-Ying Jiang
論文名稱:孔洞型二價金屬有機骨架之合成, 鑑定與氣體吸附性質研究
論文名稱(外文):Synthesis , characterization and gas adsorption of porous Metal(II)-Organic-Frameworks
指導教授:倪聖中
指導教授(外文):Sheng-Chung Ni
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:金屬有機骨架混配基微波加熱合成法
外文關鍵詞:Metal-Organic Frameworksmixed-ligandmicrowave-irradiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微波合成法,以鈷、鋅作為金屬離子,合成多種具孔洞之混配基金屬有機骨架材料。所合成之金屬有機骨架(MOFs)分別利用熱重分析儀(TGA)、X-射線繞射分析儀(XRD)、場發射掃描式電子顯微鏡 (TFE-SEM)、高解析比表面積分析儀(BET) 探討其熱穩定性、結晶型態、表面結構、氮氣與二氧化碳吸附等性質。
SEM結果表明,Co-BTC/BDC-DABCO、Zn-BTC/BDC-DABCO及M- BTC/BDC-Bpym合成之MOFs 表面型態分別為片狀層層堆疊、塊狀或長條狀之變化。 BET結果發現,金屬離子鈷、鋅,搭配主配體BTC時,Co-BTC及Zn-BTC比表面積分別為0.5167m2/g 、 1.8640m2/g。添加Bpym後,Co-BTC-Bpym及Zn-BTC-Bpym孔洞體積大,比表面積分別為208.89m2/g、8.5405m2/g,皆有明顯提升。搭配主配體BDC時,Co-BDC及Zn-BDC比表面積分別為5.8371m2/g、4.8135m2/g。添加DABCO後,Co-BDC-DABCO表面為孔洞塊狀而Zn-BDC-DABCO為孔洞立方體堆積,因此總孔體積高,其比表面積分別為133.96m2/g、863.32m2/g,為本研究具有孔洞效果最為顯著之兩材料。由二氧化碳吸附結果顯示,Zn-BDC比表面積僅5.5485 m2/g,而Zn-BDC-DABCO系列的二氧化碳比表面積介於34.043~76.357m2/g,均較Zn-BDC有大幅增加。比較氮氣與二氧化碳吸附之比表面積值,二氧化碳吸附值較小,可推測Zn-BDC-DABCO系列樣品具有較佳的氮氣/二氧化碳分離性能。
分析結果顯示︰M-DABCO與以BDC為有機配體之MOFs配位﹔M-Bpym與以BTC為有機配體之MOFs配位時,此兩者均會形成較高比表面積之 MOFs。
In this study, micro-synthesized was introduced for cobolt (Co) or zinc (Zn) containing porous metal-organic framworks (MOFs). These synthesized materials were investigated by thermogravimetric analyzer (TGA), X-ray diffractometer (XRD), thermal field emission scanning electron microscope (TEF-SEM), and surface area analyzer (BET) for their thermal stability, crystal structures and crystallinity, morphology, and N2/CO2 adsorption, respectively.
From the result of SEM observation, MOFs constructed by Co-BTC/BDC-DABCO, Zn-BTC/BDC-DABCO, and M-BTC/BDC-Bpym exhibit laminate, cube, or rod-like structures, respectively. Specific surface areas of Co-BTC and Zn-BTC are 0.5167m2/g and 1.8640m2/g, respectively. With Bpym introduced into MOFs, specific surface areas of Co-BTC-Bpym and Zn-BTC-Bpym are increased to 208.89m2/g and 8.5405m2/g, respectively. In addition, specific surface areas of Co-BDC and Zn-BDC are 5.8371m2/g and 4.8135m2/g, respectively. With DABCO introduced into MOFs, specific surface areas of Co-BDC-DABCO and Zn-BDC-DABCO are increased to 133.96m2/g and 863.32m2/g, respectively, due to their porous containing cube morphology. These two kinds materials have the highest specific surface area in this study.
From CO2 adsorption study, specific surface area of Zn-BDC and Zn-BDC-DABCO are 5.5485m2/g and 34.043 to 76.357m2/g, respectively. These values are much higher than Zn-BDC MOFs. Furthermore, CO2 adsorption is lower than N2 for Zn-BDC-DABCO. It means Zn-BDC-DABCO MOFs has better separation performance of CO2 and N2. In addition, MOFs constructed by M-DABCO/BDC and M-Bypym/BTC have higher specific surface area than others in this study.
中文摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 xi
圖目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2-1 前言 3
2-1-1 MOFs材料的發展及歷史 3
2-2基礎理論 3
2-2-1 MOFs的組成之基本結構 3
2-2-2 金屬離子 5
2-2-3有機配體類型 6
2-2-4常見之金屬有機骨架 8
2-2-5配位基之簡介 9
2-3金屬-有機骨架材料製備方法 13
2-3-1溶劑熱/水熱合成法[19] (solvothermal or hydrothermal synthesis) 13
2-3-2微波合成法(microwave synthesis) 13
2-3-3超聲波合成法[23] (sonochemical synthesis) 15
2-3-4電化學合成(electrochemical synthesis) 16
2-4主要影響因素 17
2-4-1金屬離子與有機配體的混和比例 17
2-4-2溶劑系統 17
2-4-3溫度和反應時間 17
2-4-4 pH值 17
2-5金屬-有機骨架材料主要研究方向 19
2-5-1儲氫性能 19
2-5-2吸附/分離性能 20
2-5-3催化性能 21
2-6 研究動機 23
第三章 實驗方法與儀器 24
3-1 實驗藥品及溶劑 24
3-1-1 實驗藥品 24
3-1-2 實驗溶劑 27
3-2 實驗設備 28
3-3 實驗儀器 29
3-4 實驗流程 33
3-4-1 M-MOF系列的製備 33
3-4-2 M-MOF-DABCO系列的製備 33
3-4-3 M-MOF-Bpym系列的製備 34
3-4-4 金屬離子與有機配體之混和比例代號 39
3-5比表面積氮氣吸附分析 41
3-5-1比表面積氮氣吸附理論 41
3-5-2等溫吸附曲線之分析[39] 45
3-5-3 等溫吸附曲線之遲滯環分析[39] 48
第四章 結果與討論 50
4-1 CT、CTO、CTB之物性分析與探討 51
4-1-1 熱穩定性分析 51
4-1-2 結晶型態分析 53
4-1-3 表面型態分析 56
4-1-4 氮氣吸脫附分析 62
4-1-5 小結 65
4-2 CD、CDO、CDB之物性分析與探討 66
4-2-1 熱穩定性分析 66
4-2-2 結晶型態分析 68
4-2-3 表面型態分析 71
4-2-4 氮氣吸脫附分析 77
4-2-5 小結 80
4-3 ZT、ZTO、ZTB之物性分析與探討 81
4-3-1 熱穩定性分析 81
4-3-2 結晶型態分析 83
4-3-3 表面型態分析 86
4-3-4 氮氣吸脫附分析 92
4-3-5 小結 95
4-4 ZD、ZDO、ZDB之物性分析與探討 96
4-4-1 熱穩定性分析 96
4-4-2 結晶型態分析 98
4-4-3 表面型態分析 101
4-4-4 氮氣吸脫附分析 107
4-4-5 小結 111
4-5比表面積二氧化碳吸附分析 115
4-5-1 ZD與ZDO系列之二氧化碳吸附分析 115
第五章 結論 117
第六章 參考文獻 120
1. B. Hu, M. L. Feng, J. R. Li, Q. P. Lin, X. Y. Huang, “Lanthanide Antimony Oxohalides: From Discrete Nanoclusters to Inorganic–Organic Hybrid Chains and Layers,” Angew. Chem. Int. Ed. 2011, 50, 8110−8113.
2. S. T. Zheng, T. Wu, C. Chou, A. Fuhr, P. Y. Feng, X. H. Bu, “Development of Composite Inorganic Building Blocks for MOFs,”J. Am. Chem. Soc. 2012, 134, 4517−4520.
3. P. Hagrman, D. Hagrman, J. Zubieta, “Organic-Inorganic Hybrid Materials: From Simple Coordination Polymers to Organodiamine-Templated Molybdenum Oxides,” Angew. Chem. Int. Ed. Engl. 1999, 38, 2638−2684.
4. S. Feng, R. Xu, “New Materials in Hydrothermal Synthesis,” Acc. Chen. Res. 2001, 34, 239−247.
5. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, “Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks,” Acc. Chem. Res. 2001, 34, 319−330.
6. L. Peng, S. Wu, X. Yang, J. Hu, X. Fu, M. Li, L. Bai, Q. Huo, J. Guan, “Oxidation of benzyl alcohol over metal organic frameworks M-BTC (M = Co, Cu, Fe),” New J. Chem. 2013, 00, 1-3.
7. D. Sahu, P. Mishra, S. Edubilli, A. Verma, S. Gumma, “Hydrogen Adsorption on Zn-BDC, Cr-BDC, Ni-DABCO, and Mg- DOBDC Metal-Organic Frameworks,” New J. Chem. Eng. Data. 2013, 58, 3096−3101.
8. B. Liu, R. Zhang, C. Y. Pan, H. L. Jiang, “Unprecedented Li+ Exchange in an Anionic Metal-Organic Framework: Significantly Enhanced Gas Uptake Capacity,” Inorganic Chemistry.2017, 56, 4263−4266.
9. S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl, W. J. Christopher, “Modification of the Mg/DOBDC MOF with amines to enhance CO 2 adsorption from ultradilute gases,” Journal of Physical Chemistry Letters. 2012, 3, 1136−1141.
10. S. Kitagawa, R. Kitaura, S. Noro, “Functional Porous Coordination Polymers,” Angewandte Chemie International Edition. 2004, 43, 2334−2375.
11. 王心瑀,「含1,4-二(4-吡啶基)-2,3-偶氮-1,3-丁二烯與羧酸配基之金屬配位聚合物的合成、結構解析與性質量測」,東吳大學化學系,碩士論文,(2014).
12. Z. Xiang, D. Cao, J. Lan, 4W. Wang, D. P. Broom, “Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks,” Energy & Environmental Science. 2010, 3, 1469−1487.
13. 王碩、鲁曉明,“1,3,5-均苯三羧酸根金屬-有機多重框架結構配合物”《化學通報》,1期,(2007).
14. 魏文英、方鍵、孔海寧、韓金玉、常賀英,“金屬有機骨架材料的合成及應用”《化學通報》,6期,(2005).
15. 楊華、田瑞、李也,“1,4-二氮雜二環[2.2.2]辛烷(DABCO)催化的有機化學反應” 《化學通報》,1期,(2007).
16. A. M. Zhang, W. Wang, G.Q. Lin, “Recent Advances in Baylis-Hillman Rections,” Chinese Journal of organic Chemistry. 2001, 21, 134-143.
17. X. M. Hao, C. S. Gu, L. L. Ji, S. J. Li, Y. Li, W. D Song,
“Synthesis and crystal structures of two Ag(Ⅰ) complexes with 2,4-dichlorophenoxyacetic acid and nitrogen heterocyclic Ligands,” Chinese Journal of Inorganic Chemistry. 2015, 31, 1063−1070.
18. F. P. Liang, Z. L. Chen, R. X. Hu, H. Liang, K. B. Yu, Z. H. Zhou , “Synthesis and crystal structures of the complexes of transition metal with 4,4'-bipyridine,” Acta Chimica Sinica. 2001, 59, 405−412.
19. 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,“磁性基本特性及磁性材料應用”, 國立台灣大學化學系,(2007).
20. H. Antonio, D. O. Angel, M. Andres, “Microwaves in organic synthesis. Thermal and non-thermal microwave effects,” Chem. Soc. Rev. 2005, 34, 164−178.
21. C. Zhang, L. Liao, S. Gong, “Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization,” Green Chemistry. 2007, 9, 303−314.
22. G. Qu, L. Zhao, D. Wang, J. Wu, H. Guo, H. M. Guo, M. Negishi, J. A. Leary, C. R. Bertozzi, “Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water,” Green Chemistry. 2008, 10, 287−289.
23. 邊延江、李記太、李同雙,“超聲波在金屬參與的有機合成方面的應用”《有機化學》,4期,227−232,(2002).
24. S. T. Wu, L. S. Long, R. B. Huang, L. S. Zheng, “pH-Dependent assembly of supramolecular architectures from 0D to 2D networks,” Crystal Growth and Design. 2007, 7, 1746−1752.
25. “Hydrogen Storage Materials Workshop Proceedings”, United States Department of Energy. 2002.
26. J. L. C. Rowsell and O. M. Yaghi, “Strategies for hydrogen storage in metal-organic frameworks,” Angew. Chem. Int. Ed. 2005, 44, 4670 –4679.
27. S. Kaye, A. Dailly, O. Yaghi, J. Long, “Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5),”J. Am. Chem. Soc. 2007, 129 ,14176−14177.
28. X. Wang, L. Li, J. Yang, J. Li, “CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks,” Chinese Journal of Chemical Engineering. 2016, 24, 1687−1694.
29. Y. H. Kim, P. Kumar, E. E. Kwon, K. H. Kim, “Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde,” Microchemical Journal. 2017, 132, 219−226.
30. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi , “Ultrahigh porosity in metal-organic frameworks,” Science. 2010, 329, 424−428.
31. A.R. Millward, O.M. Yaghi, “Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,” J. Am. Chem. Soc. 2005,127, 17998−17999.
32. P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, “High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101,”Langmuir. 2008, 24, 7245−7250.
33. N. A. Khan, S. H. Jhung, “Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation,” Journal of Hazardous Materials. 2017, 325, 198−213.
34. H. Y. Cho, D. A. Yang, J. Kim, S. Y. Jeong, W. S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Catalysis Today. 2012, 185, 35−40.
35. K. Mo, Y. Yang, Y. Cui, “A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis,” J. Am. Chem. Soc. 2014, 136, 1746−1749.
36. C. Stewart, M.A. Hessami, “A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach,” Energy Convers.Manage. 2005, 46, 403−420.
37. M. North, D.L. Usanov, C. Young, “Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis,” Chem. Rev. 2008,108, 5146
38. K. Kumar, M. Castro, M. Martinez-Escandell, M. Molina-Sabio, and F. Rodriguez-Reinoso, “A Continuous Binding Site Affinity Distribution Function from the Freundlich Isotherm for the Supercritical Adsorption of Hydrogen on Activated Carbon,” J. Phys. Chem. 2010, 114, 13759–13765.
39. 楊正虹,“物理吸附100問”,化學工業出版社,(2017)。
40. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, “Carbon dioxide capture in metal-organic frameworks,”Chem. Rev. 2012, 112, 724−781.
41. S.R. Caskey, A.G. Wong-Foy, A.J. MatzgerJ, “Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores,” Am. Chem. Soc. 2008, 130 ,10870−10871.
42. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, “High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture,”Science, 2008, 319, 939−943.
43. A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, “ Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach,”J. Am. Chem. Soc. 2009,131 ,18198−18199.
44. W.L. Queen, C.M. Brown, D.K. Britt, P. Zajdel, M.R. Hudson, O.M. Yaghi, “Site-Specific CO2 Adsorption and Zero Thermal Expansion in an An isotropic Pore Network,”J. Phys. Chem. C. 2011, 115, 24915−24919.
45. M.K. Rana, H.S. Koh, J. Hwang, D.J. Siegel, “Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks,”J. Phys. Chem. C. 2012, 116, 16957−16968.
46. S. Choi, T. Watanabe, T.H. Bae, D.S. Sholl, C.W. Jones, “Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases,”J. Phys. Chem. Lett. 2012, 3, 1136−1141.
47. T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, “Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc),”J. Am. Chem. Soc. 2012, 134, 7056−7065.
48. W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, “Diamine-functionalized metal-organic framework
: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism,”Energ. Environ. Sci. 2014, 7, 744−751.
電子全文 電子全文(網際網路公開日期:20220810)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔