1. B. Hu, M. L. Feng, J. R. Li, Q. P. Lin, X. Y. Huang, “Lanthanide Antimony Oxohalides: From Discrete Nanoclusters to Inorganic–Organic Hybrid Chains and Layers,” Angew. Chem. Int. Ed. 2011, 50, 8110−8113.
2. S. T. Zheng, T. Wu, C. Chou, A. Fuhr, P. Y. Feng, X. H. Bu, “Development of Composite Inorganic Building Blocks for MOFs,”J. Am. Chem. Soc. 2012, 134, 4517−4520.
3. P. Hagrman, D. Hagrman, J. Zubieta, “Organic-Inorganic Hybrid Materials: From Simple Coordination Polymers to Organodiamine-Templated Molybdenum Oxides,” Angew. Chem. Int. Ed. Engl. 1999, 38, 2638−2684.
4. S. Feng, R. Xu, “New Materials in Hydrothermal Synthesis,” Acc. Chen. Res. 2001, 34, 239−247.
5. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, “Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks,” Acc. Chem. Res. 2001, 34, 319−330.
6. L. Peng, S. Wu, X. Yang, J. Hu, X. Fu, M. Li, L. Bai, Q. Huo, J. Guan, “Oxidation of benzyl alcohol over metal organic frameworks M-BTC (M = Co, Cu, Fe),” New J. Chem. 2013, 00, 1-3.
7. D. Sahu, P. Mishra, S. Edubilli, A. Verma, S. Gumma, “Hydrogen Adsorption on Zn-BDC, Cr-BDC, Ni-DABCO, and Mg- DOBDC Metal-Organic Frameworks,” New J. Chem. Eng. Data. 2013, 58, 3096−3101.
8. B. Liu, R. Zhang, C. Y. Pan, H. L. Jiang, “Unprecedented Li+ Exchange in an Anionic Metal-Organic Framework: Significantly Enhanced Gas Uptake Capacity,” Inorganic Chemistry.2017, 56, 4263−4266.
9. S. Choi, T. Watanabe, T. H. Bae, D. S. Sholl, W. J. Christopher, “Modification of the Mg/DOBDC MOF with amines to enhance CO 2 adsorption from ultradilute gases,” Journal of Physical Chemistry Letters. 2012, 3, 1136−1141.
10. S. Kitagawa, R. Kitaura, S. Noro, “Functional Porous Coordination Polymers,” Angewandte Chemie International Edition. 2004, 43, 2334−2375.
11. 王心瑀,「含1,4-二(4-吡啶基)-2,3-偶氮-1,3-丁二烯與羧酸配基之金屬配位聚合物的合成、結構解析與性質量測」,東吳大學化學系,碩士論文,(2014).12. Z. Xiang, D. Cao, J. Lan, 4W. Wang, D. P. Broom, “Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks,” Energy & Environmental Science. 2010, 3, 1469−1487.
13. 王碩、鲁曉明,“1,3,5-均苯三羧酸根金屬-有機多重框架結構配合物”《化學通報》,1期,(2007).
14. 魏文英、方鍵、孔海寧、韓金玉、常賀英,“金屬有機骨架材料的合成及應用”《化學通報》,6期,(2005).
15. 楊華、田瑞、李也,“1,4-二氮雜二環[2.2.2]辛烷(DABCO)催化的有機化學反應” 《化學通報》,1期,(2007).
16. A. M. Zhang, W. Wang, G.Q. Lin, “Recent Advances in Baylis-Hillman Rections,” Chinese Journal of organic Chemistry. 2001, 21, 134-143.
17. X. M. Hao, C. S. Gu, L. L. Ji, S. J. Li, Y. Li, W. D Song,
“Synthesis and crystal structures of two Ag(Ⅰ) complexes with 2,4-dichlorophenoxyacetic acid and nitrogen heterocyclic Ligands,” Chinese Journal of Inorganic Chemistry. 2015, 31, 1063−1070.
18. F. P. Liang, Z. L. Chen, R. X. Hu, H. Liang, K. B. Yu, Z. H. Zhou , “Synthesis and crystal structures of the complexes of transition metal with 4,4'-bipyridine,” Acta Chimica Sinica. 2001, 59, 405−412.
19. 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,“磁性基本特性及磁性材料應用”, 國立台灣大學化學系,(2007).
20. H. Antonio, D. O. Angel, M. Andres, “Microwaves in organic synthesis. Thermal and non-thermal microwave effects,” Chem. Soc. Rev. 2005, 34, 164−178.
21. C. Zhang, L. Liao, S. Gong, “Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization,” Green Chemistry. 2007, 9, 303−314.
22. G. Qu, L. Zhao, D. Wang, J. Wu, H. Guo, H. M. Guo, M. Negishi, J. A. Leary, C. R. Bertozzi, “Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water,” Green Chemistry. 2008, 10, 287−289.
23. 邊延江、李記太、李同雙,“超聲波在金屬參與的有機合成方面的應用”《有機化學》,4期,227−232,(2002).
24. S. T. Wu, L. S. Long, R. B. Huang, L. S. Zheng, “pH-Dependent assembly of supramolecular architectures from 0D to 2D networks,” Crystal Growth and Design. 2007, 7, 1746−1752.
25. “Hydrogen Storage Materials Workshop Proceedings”, United States Department of Energy. 2002.
26. J. L. C. Rowsell and O. M. Yaghi, “Strategies for hydrogen storage in metal-organic frameworks,” Angew. Chem. Int. Ed. 2005, 44, 4670 –4679.
27. S. Kaye, A. Dailly, O. Yaghi, J. Long, “Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5),”J. Am. Chem. Soc. 2007, 129 ,14176−14177.
28. X. Wang, L. Li, J. Yang, J. Li, “CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks,” Chinese Journal of Chemical Engineering. 2016, 24, 1687−1694.
29. Y. H. Kim, P. Kumar, E. E. Kwon, K. H. Kim, “Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde,” Microchemical Journal. 2017, 132, 219−226.
30. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi , “Ultrahigh porosity in metal-organic frameworks,” Science. 2010, 329, 424−428.
31. A.R. Millward, O.M. Yaghi, “Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,” J. Am. Chem. Soc. 2005,127, 17998−17999.
32. P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, “High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101,”Langmuir. 2008, 24, 7245−7250.
33. N. A. Khan, S. H. Jhung, “Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation,” Journal of Hazardous Materials. 2017, 325, 198−213.
34. H. Y. Cho, D. A. Yang, J. Kim, S. Y. Jeong, W. S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Catalysis Today. 2012, 185, 35−40.
35. K. Mo, Y. Yang, Y. Cui, “A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis,” J. Am. Chem. Soc. 2014, 136, 1746−1749.
36. C. Stewart, M.A. Hessami, “A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach,” Energy Convers.Manage. 2005, 46, 403−420.
37. M. North, D.L. Usanov, C. Young, “Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis,” Chem. Rev. 2008,108, 5146
38. K. Kumar, M. Castro, M. Martinez-Escandell, M. Molina-Sabio, and F. Rodriguez-Reinoso, “A Continuous Binding Site Affinity Distribution Function from the Freundlich Isotherm for the Supercritical Adsorption of Hydrogen on Activated Carbon,” J. Phys. Chem. 2010, 114, 13759–13765.
39. 楊正虹,“物理吸附100問”,化學工業出版社,(2017)。
40. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, “Carbon dioxide capture in metal-organic frameworks,”Chem. Rev. 2012, 112, 724−781.
41. S.R. Caskey, A.G. Wong-Foy, A.J. MatzgerJ, “Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores,” Am. Chem. Soc. 2008, 130 ,10870−10871.
42. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, “High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture,”Science, 2008, 319, 939−943.
43. A.O. Yazaydin, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, “ Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach,”J. Am. Chem. Soc. 2009,131 ,18198−18199.
44. W.L. Queen, C.M. Brown, D.K. Britt, P. Zajdel, M.R. Hudson, O.M. Yaghi, “Site-Specific CO2 Adsorption and Zero Thermal Expansion in an An isotropic Pore Network,”J. Phys. Chem. C. 2011, 115, 24915−24919.
45. M.K. Rana, H.S. Koh, J. Hwang, D.J. Siegel, “Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks,”J. Phys. Chem. C. 2012, 116, 16957−16968.
46. S. Choi, T. Watanabe, T.H. Bae, D.S. Sholl, C.W. Jones, “Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases,”J. Phys. Chem. Lett. 2012, 3, 1136−1141.
47. T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, “Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc),”J. Am. Chem. Soc. 2012, 134, 7056−7065.
48. W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, “Diamine-functionalized metal-organic framework
: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism,”Energ. Environ. Sci. 2014, 7, 744−751.