(3.232.129.123) 您好!臺灣時間:2021/02/26 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈冠緯
研究生(外文):Kuan-Wei Shen
論文名稱:利用混合區間二型遞迴式模糊小腦及雙邊濾波實現衛星影像除霧
論文名稱(外文):Using a Hybrid of Interval Type-2 RFCMAC and Bilateral Filter for Satellite Image Dehazing
指導教授:游正義林正堅林正堅引用關係
指導教授(外文):Cheng-Yi YuCheng-Jian Lin
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:遙測衛星影像懸浮粒子除霧區間二型遞迴式模糊小腦模型傳輸因子雙邊濾波二次函數大氣光視覺評估量化評估
外文關鍵詞:Remote sensing satellite imageParticlesDehazingInterval Type-2 RFCMAC ModelTransmission mapBilateral filterQuadratic functionAtmospheric lightVisual assessmentQuantitative evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日益進步,遙測衛星影像(Remote sensing satellite image)的發展也更加即時且精確的監測地表環境或是提早預防不可避免的災害。由於多變的天氣好比大氣懸浮粒子(Particles)所構成的雲層或是霧(Haze),因這些現象導致在衛星影像中呈現較低對比(Low contrast)且失去了地表上部分的資訊。因此本論文針對單張衛星影像提出一個有效的除霧(Dehazing)方法,用意在於增強影像的對比度且濾除被霧所覆蓋的區域,進而顯現出遺失掉的資訊。首先利用區間二型遞迴式模糊小腦模型(Interval Type-2 RFCMAC Model)估測影像的初始傳輸平面(Initial transmission map)。對於處理過程所產生之光暈(Halo)及顏色過飽和(Color over saturation)等問題,將依序採用雙邊濾波(Bilateral filter)及二次函數(Quadratic function)非線性轉換來精煉(Refine)初始傳輸平面。在大氣光(Atmospheric light)的估測,採用前1%最亮的區域做為大氣光的顏色向量。最後,將精煉過的傳輸平面與大氣光做為重建影像(Reconstruct image)的參數。實驗結果顯示本篇所提出之衛星影像除霧方法,在重建影像能見度細節與色彩對比都有不錯的效能。為了更進一步驗證所提出方法之效能,分別進行視覺評估(Visual assessment)及量化評估(Quantitative evaluation)之分析,並與相關學者所提出之方法進行比較。經由視覺評估及量化評估分析後,在視覺與數據分析上確實能得到很好的結果。
With advances in technology, the development of Remote Sensing Satellite Image has been real-time and accurate to monitor the environment of the surface or prevent the inevitable disaster earlier. Owing to the changeable weather is just like clouds or haze constituted by atmospheric particles, then this phenomenon cause the low contrast presented in satellite image and lose many information on the surface of the earth. Therefore, in this paper we propose an issue for dehazing to single satellite image, which is to enhance the contrast of image and filter the haze that cover the location, then the losing information will be back. First, we use Interval Type-2 RFCMAC Model to estimate the initial transmission map of the image. When facing the problems of halo and color over saturation, we adopt the bilateral filter and the quadratic function nonlinear transformation step by step to refine the initial transmission map. At the atmospheric light estimation, we adopt the first 1% brightest area as the color vector of atmospheric light. Finally, we take the refined transmission map and atmospheric light as the two parameters of reconstruct image. The experiment result shows that the method of satellite image dehazing has an effective results in visibility details and color contrast of reconstruction image. Furthermore, in order to prove the effective results, we take the visual assessment and quantitative evaluation respectively to compare with other authors. After visual assessment and quantitative evaluation, we get the better result in visual and data indeed.
摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 3
1.3 章節介紹 6
第二章 影像除霧模型 7
第三章 所提出的衛星影像除霧方法 10
3.1 區間二型遞迴式模糊小腦控制器估測初始傳輸平面 11
3.1.1. 區間二型遞迴式模糊小腦控制器 17
3.1.2. 改良型人工蜂群演算法 23
3.1.2.1. 人工蜂群演算法 24
3.1.2.2. 具動態分群之人工蜂群演算法 28
3.2 精煉傳輸平面 35
3.2.1. 利用雙邊濾波解決光暈 35
3.2.2. 利用二次函數解決顏色過飽和 40
3.3 大氣光的估測 42
3.4 還原影像 46
第四章 實驗與討論 47
4.1 視覺評估 50
4.2 量化指標評估 61
第五章 結論與未來工作 64
參考文獻 65
[1] R. Fattal, “Single image dehazing,” Proceedings of ACM SIGGRAPH 2008, Vol. 27, No. 3, pp. 1-8, Aug. 2008.
[2] R. T. Tan, “Visibility in bad weather from a single image,” Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, Jun. 2008.
[3] J. P. Tarel and N. Hautiere, “Fast visibility restoration from a single color or gray level image,” Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, pp. 2201-2208, Sep. 2009.
[4] K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 12, pp. 2341-2353, Dec. 2011.
[5] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 35, No. 6, pp. 1397–1409, Jun. 2013.
[6] Y. H. Shiau, P. Y. Chen, H. Y. Yang, C. H. Chen, and S.S. Wang, “Weighted haze removal method with halo prevention,” Journal of Visual Communication and Image Representation, Vol. 25, pp. 445-453,Feb .2014.
[7] J. G. Wang, S. C. Tai, and C. J. Lin, “Image haze removal using a hybrid of fuzzy inference system and weighted estimation,” Journal of Electronic Imaging, Vol. 24, No. 3, pp. 033027-1-033027-13, 2015.
[8] S.C.Huang, B.H.Chen, and W.J.Wang,“An efficient visibility enhancement algorithm for road scenes captured by intelligent transportation systems,” IEEE Trans. on Intelligent Transportation Systems,Vol.15,No.5,pp.2321-2332,Oct.2014.
[9] G. Ge, Z. Wei, and J. Zhao, “Fast single-image dehazing using linear transformation,” Optik, Vol. 126, No. 21, pp. 3245–3252,Nov.2015.
[10] C.O. Ancuti and C. Ancuti, “Single image dehazing by multi-scale fusion,” IEEE Transactions on Image Processing, Vol. 22, pp. 3271-3282. Aug. 2013.
[11] H. B. Liu, J. Yang, Z. P. Wu, and Q. N. Zhang, “Fast single image dehazing based on image fusion, ” Journal of Electronic Imaging, Vol. 24, No. 1, pp.013020-1–013020- 10, 2015.
[12] J. Long, Z. Shi, W. Tang, and C. Zhang, “Single remote sensing image dehazing , ” IEEE. Geosci. Remote Sens. Letters, Vol. 11, No. 1, pp. 59-63, Jan. 2014.
[13] X. Pan, F. Xie, Z. Jiang, and J. Yin, “Haze removal for a single remote sensing image based on deformed haze imaging model, ” IEEE Signal Processing Letters, Vol. 22, No. 10, pp. 1806-1810, Oct. 2015.
[14] W. Ni, X. Gao, and Y. Wang, “Single satellite image dehazing via linear intensity transformation and local property analysis, ” Neuro computing, Vol. 175, pp. 25-39, Jan.2016.
[15] J.Kung, D. Kim,and S. Mukhopadhyay, “On the impact of energy-accuracy tradeoff in a digital cellular neural network for image processing, ” IEEE Trans Comput Aided Des of Integr Circuits and Syst ,Vol.34,pp.1070–1081,Jul.2015.
[16] X. Yang, D. Liu,and Y. Huang, “Neural-network-based online optimal control for uncertain nonlinear continuous-time systems with control constraints, ” IET Control Theory Appl., Vol. 7, No. 17, pp. 2037-2047, Nov. 2013.
[17] T. H. Oong, and N.A.M. Isa, “Adaptive evolutionary artificial neural networks for pattern classification,” IEEE Trans. Neural Networks, Vol. 22, No. 11, pp.1823–1836, Nov.2011.
[18] J. S. Albus ,“A new approach to manipulator control: the cerebellar model articulation controller (CMAC),” Journal of Dynamic Systems, Measurement ,and Control,Vol. 97, pp.220-227,Sep.1975.
[19] Y. Iiguni, “Hierarchical image coding via cerebeller model arithmetic computers,” IEEE Trans. Image Processing, Vol. 5, No. 10, 1996.
[20] J. G. Juang, and C. L. Lee, “Applications of cerebellar model articulation controllers to intelligent landing system,” Journal of Univ. Comp. Sci., Vol. 15, No. 13, pp.2586-2607,Jan.2009.
[21] W. Yu, F. O. Rodriguez, and M. A. Moreno-Armendariz, “Hierarchical fuzzy CMAC for nonlinear systems modeling,” IEEE Trans. Fuzzy Systems, Vol. 16, No.5, pp. 1302-1314, Oct. 2008.
[22] C.M.Lin ,and H.Y.Li, “Dynamic petri fuzzy cerebellar model articulation control system design for magnetic levitation system,” IEEE Trans. Control Syst. Technol. ,Vol.23, pp.693–699,Mar.2015.
[23] C.M. Lin, L.Y. Chen, and D. S. Yeung, “Adaptive filter design using recurrent cerebellar model articulation controller,” IEEE Trans. Neural Network., Vol. 21, No.7, pp. 1149-1157, Jul. 2010.
[24] C.H. Lee, F.Y. Chang,and C.M. Lin, “An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization,” IEEE Trans. Cybern., Vol. 43, No. 3, pp. 329-341, Mar. 2013.
[25] C.M.Lin, M.S. Yang, F.Chao, X.M. Hu, and J.Zhang, “ Adaptive filter design using type-2 fuzzy cerebellar model articulation controller,” IEEE Trans.Neural Network. Learn. Syst.,Vol.27, No.10,Oct.2016.
[26] O. Castillo and P. Melin, “A review on the design and optimization of interval type-2 fuzzy controllers,”Appl. Soft. Comput., Vol. 12, No. 4, pp. 1267-1278, Apr. 2012.
[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Mass., Cambridge:MIT Press, Vol. 1, pp. 318-362, Oct.1986.
[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, Vol. 4, pp. 1942-1948, Nov. 1995.
[29] J. H. Holland, “Genetic algorithms,” Scientific American 4, pp. 66-72, 1992.
[30] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359, Dec. 1997.
[31] D.Karaboga,“An idea based on honeybee swarm for numerical optimization,” Techn.Rep. TR06, Erciyes Univ. Press,Erciyes, Oct.2005.
[32] B. Basturk, and D. Karaboga, “An artificial bee colony (ABC) algorithm for numeric function optimization,” IEEE Swarm Intelligence Symposium 2006, pp. 12-14, May. 2006.
[33] L. Yang, X. Sun, L. Peng, X. Yao, and T. Chi, “An agent-based artificial bee colony (ABC) algorithm for hyperspectral image endmember extraction in parallel,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 8, No. 10, pp. 4657-4664, Oct. 2015.
[34] W.F. Gao, L.L. Huang, S.Y. Liu, and C. Dai, “Artificial bee colony algorithm based on information learning,” IEEE Trans. Cybern., Vol.45, pp. 2827-2839,Jan.2015.
[35] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE International Conference on Computer Vision, pp 839-846, Jan.1998.
[36] N. Hautiere, J. -Po Tarel, D. Aubert, and E. Dumont, “Blind contrast enhancement assessment by gradient ratioing at visible edges,” Journal Image Analysis &Stereology, Vol. 27, No. 2, pp. 87-95,Jun.2008.
電子全文 電子全文(網際網路公開日期:20220807)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔