(3.239.192.241) 您好!臺灣時間:2021/03/02 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖仕賢
研究生(外文):Liao Shi Xian
論文名稱:鰭片結構與串聯配置對具吸附材之熱交換器 增強吸濕與脫附性能之影響
論文名稱(外文):The Effect of Fin Structure and Series Arrangement on the Improvement of Moisture Absorption and Desorption Performance of Heat Exchanger with Adsorbent Materials
指導教授:吳友烈
指導教授(外文):Yu-Lieh Wu
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:140
中文關鍵詞:固態除濕脫附能力吸附能力廢熱
外文關鍵詞:solid dehumidificationdesorption capacityabsorption capacitywaste heat
相關次數:
  • 被引用被引用:1
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對全球暖化的問題,節能減碳為目前相當重視的一門課題,近年來台灣的氣候變化導致室內環境品質被受重視,本研究主要針對環境濕度上的改善,運用固態除濕來取代傳統除濕,除了能夠降低大量的能耗外,還可以利用固態除濕材的再生特性達到環保的目標。
經研究發現,凸點型熱交換器串聯組合對於傳統平板型熱交換器具有吸附/脫附增強的效果,其瞬間最大吸附率比平板型熱交換器串聯組合,提升效率約為10.2%~38.6%。另一方面,使用廢熱來輔助脫附可達到相當高的提升效率,在脫附溫度60℃時、使用廢熱90℃與120℃,三種不同熱交換器串聯組合、在使用廢熱時提升效率分別為117.5%、115.1%,尤其在脫附端低風速時使用廢熱,其脫附能力比高風速時還要高。此外,利用模擬軟體進行速度流場分析,發現旁通型熱交換器在低風速時其速度流場分佈比高風速時較為均勻。
In face of the problem of global warming, energy conservation and emission reduction has become an important topic at present. In recent years, great attention has been paid to indoor environmental quality affected by climate changes in Taiwan. This research applied solid dehumidification to replace the traditional dehumidification to improve the environmental humidity. In addition to the reduction of energy consumption, the regeneration performance of solid dehumidification materials can also be used to achieve the goal of environmental protection.
According to the research findings, the series combination of bump type heat exchanger has the better absorption/desorption effect than the traditional flat-plate heat exchanger, and its instantaneous maximum absorption rate has improved by about 10.2%~38.6% compared with series combination of flat-plate heat exchanger. On the other hand, the use of waste heat for desorption can significantly improve the efficiency. At the desorption temperature of 60℃, the efficiency of 3 different series combinations of heat exchangers has been respectively increased by 117.5% and 115.1% when the waste heat (90℃ and 120℃ waste heat) is used. In particular, when the waste heat is used at the low air speed of desorption side, its desorption capacity is higher than that of higher air speed. Moreover, simulation software was applied to conduct Velocity Flow Field Analysis and it is found that by-pass type heat exchanger has the more uniform velocity flow field distribution than that of high air speed
摘要 I
目錄 V
圖目錄 X
表目錄 XX
第一章 緒論 1
一、 研究動機與目的 1
二、 研究方法 6
三、 研究步驟及流程圖 7
四、 文獻回顧 8
第二章 研究原理與相關理論 19
一、 除濕方法介紹 19
(一)、 冷卻除濕 19
(二)、 液態除濕 20
(三)、 固態除濕 21
(四)、 固態除濕材料特性 23
二、 相關公式及除濕理論 25
(一)、 濕度比公式 25
(二)、 濕度效率&脫附效率公式 27
(三)、 吸附率&脫附率公式 27
(四)、 吸附量&脫附量公式 28
(五)、 脫附能耗(SECdes)公式 29
(六)、 相對濕度公式 29
(七)、 露點溫度 30
(八)、 比容公式 30
(九)、 焓公式 30
(十)、 焓效率公式 31
三、 水蒸氣分壓 31
四、 空氣熱傳遞理論 33
(一)、 傅立葉定律 33
(二)、 牛頓冷卻定律 34
(三)、 熱阻抗 35
五、 本研究固態除濕系統之熱傳公式 36
六、 流體力學相關理論 39
(一)、 雷諾數 39
(二)、 福勞德數 40
(三)、 柏努利方程式 40
(四)、 風量計算 41
七、 水份蒸發之質量與能量轉換 42
八、 不確定度分析 44
第三章 研究架構與規劃 46
一、 模擬軟體介紹 46
二、 實驗方法 48
三、 實驗參數 49
(一)、 第一部份實驗(吸附) 49
(二)、 第二部份實驗(脫附) 49
四、 實驗流程 51
五、 實驗樣品 52
(一)、 實驗樣品規格 52
(二)、 實驗樣品串聯組合位置 55
六、 實驗設備介紹 56
(一)、 固態除濕系統機台 56
(二)、 離心式風機 57
(三)、 變頻器 58
(四)、 電熱絲加熱器 58
(五)、 環控室 59
七、 量測儀器介紹 60
(一)、 數據擷取器(GL840) 60
(二)、 差壓計 61
(三)、 流量計 62
(四)、 溫濕度計 62
(五)、 熱電偶線 63
(六)、 風速計 64
第四章 研究結果與分析 65
一、 氣體流場與進出口壓差模擬 65
二、 第一部份實驗(吸附) 73
三、 第二部份實驗(脫附) 81
四、 固定壓差下探討三種熱交換器之吸附與脫附能力 111
五、 不確定度分析 117
第五章 結論與建議 119
第六章 參考文獻 122
附錄一 127
附錄二 132
[1]. http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a8101
[2]. 張立志,除濕技術,北京,化學工業出版社,2005
[3]. D.La,Y.J.Dai,Y.Li,R.Z.Wang,T.S.Ge,“Technical development of rotary Sustainable Energy Reviews”, Vol. 14, pp. 130-147, 2010
[4]. S.K. Rambhad, P.V. Walke, D.J. Tidke,“Solid desiccant dehumidification and regeneration methods—A review”, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 73-83, 2016
[5]. T.K.Ghosh,A.L.Hines.,“Solid desiccant dehumidification systems”, Studies in Surface Science and Catalysis,Vol.120, pp. 879-916, 1998.
[6]. Muhammad Sultan. et. al.,“An overview of solid desiccant dehumidification and air conditioning systems”,Renewable and Sustainable Energy Review. Vol. 46, pp. 16-29, 2015.
[7]. http://www.asap.com.tw/item/201604AM200000006
[8]. https://tw.1688.com/pic/-313378B7D0CAAFB7D6D7D3C9B8.html
[9]. Z.Ahlem,Z.G.Leila,B.N.Sassi,“ Open solid desiccant cooling air systems:A review and comparative study”, Renewable and Sustainable Energy Reviews,Vol. 54, pp. 889-917, 2016
[10]. S.Misha,S.Mat,M.H.Ruslan,K.Sopian,“Review of solid, liquid desiccant in the drying applications and its regeneration methods”, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4686-4707, 2012
[11]. D.B.Jani,M.Mishra,P.K. Sahoo,” Performance studies of hybrid solid desiccant–vapor compression air-conditioning system for hot and humid climates”, Energy and Buildings, Vol. 102, pp. 284-292, 2015
[12]. X.Zheng,T.S. Ge, R.Z. Wang,” Recent progress on desiccant materials for solid desiccant cooling systems”, Energy, Vol. 74, pp. 280-294, 2014
[13]. http://www2.ess.nthu.edu.tw/~cnt/lab-intro.htm
[14]. http://www.quxx.com.cn/quxx-gaoxishuixingshuzhihuixi.html
[15]. Y. Zhao, T.S. Ge, Y.J. Dai, R.Z. Wang, “Experimental investigation on a desiccant dehumidification unit using fin-tube heat exchanger with silica gel coating”, Applied Thermal Engineering, Vol. 63, pp. 52-58, 2014
[16]. Osamu Tanaka, “An analysis of simultaneous heat and water vapor exchange through a flat paper plate crossflow total heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 27, pp. 2259-2265, 1984
[17]. W.X. Yuan, Y. Zheng, X.R. Liu, X.G. Yuan, “Study of a new modified cross-cooled compact solid desiccant dehumidifier”, Applied Thermal Engineering, Vol. 28, pp. 2257-2266, 2008
[18]. T.S. Ge, Y.J. Dai, R.Z. Wang, Z.Z. Peng, “Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers”, Energy, Vol. 35, pp. 2893-2900, 2010
[19]. Y. Yao, K. Yang, S.Q. Liu,“Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration Energy”, Vol. 66, pp.799-809, 2014
[20]. Y. Yin, X. Zhang, D. Peng, X. Li, “Model validation and case study on internally cooled heated”, International Journal of Thermal Sciences, Vol. 48, pp. 1664-1771, 2009
[21]. W.J. Zhang, Y. Yao, R.S. Wang, “Influence of ultrasonic frequency on the regeneration of silica gel by applying high-intensity ultrasound”, Applied Thermal Engineering, Vol. 30, pp. 2080-2087, 2010
[22]. Y. Yao, K. Yang, W.J. Zhang, S.Q. Liu,” Parametric study on silica gel regeneration by hot air combined with ultrasonic field based on a semi-theoretic model”, International Journal of Thermal Sciences, Vol. 84, pp.86-103, 2014
[23]. C.H. Chen, C.Y. Hsu, C.C. Chen, S.L. Chen, “Silica gel polymer composite desiccants for air conditioning systems”, Energy and Buildings”, Vol.101, pp. 122-132, 2015
[24]. L.M. Hu, T.S. Ge, Y. Jiang, R.Z. Wang, ”Performance study on composite desiccant material coated fin-tube heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 90, pp.109-120, 2015
[25]. K.S. Chang, H.C. Wang, T.W. Chung, “Effect of regeneration conditions on the adsorption dehumidification process in packed silica gel beds”, Applied Thermal Engineering, Vol. 24, pp. 735-742, 2004
[26]. J. Sun, R.W. Besant, “Heat and mass transfer during silica gel–moisture interactions”, International Journal of Heat and Mass Transfer, Vol.48, pp. 4953-4962, 2005
[27]. T.S. Ge, Y.J. Dai, R.Z. Wang, Z.Z. Peng, “Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers”, Energy, Vol.35, pp. 2893-2900, 2010
[28]. T.S. Ge, Y.J. Dai, R.Z. Wang, “Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model”, Energy Conversion and Management, Vol. 52, pp. 2329-2338, 2011
[29]. Y. Jiang, T.S. Ge, R.Z. Wang, L.M. Hu, “Experimental investigation and analysis of composite silica-gel coated fin-tube heat exchangers”, International journal of Refrigeration, Vol. 51, pp. 169-179, 2015
[30]. P. Finocchiaro, M. Beccali, V. Gentile, “Experimental results on adsorption beds for air dehumidification”, International journal of Refrigeration, Vol.63, pp. 100-112, 2016
[31]. T. Adachi, H. Uehara, “Correlation between heat transfer and pressure drop in channels with periodically grooved parts”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 4333-4343, 2001
[32]. E.A. Smith, P. Pongjet, “Numerical study on heat transfer of turbulent channel flow over periodic grooves”, International Communications in Heat and Mass Transfer, Vol. 35, pp. 844-852, 2008
[33]. A.A. Ramadhan, Y.T.A. Anii, A.J. Shareef, “Groove geometry effects on turbulent heat transfer and fluid flow”, Heat and Mass Transfer, Vol. 49, Issue 2, pp. 185-195, 2013
[34]. C. Bi, G.H. Tang, W.Q. Tao, “Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves”, Applied Thermal Engineering, Vol. 55, pp. 121-132, 2013
[35]. B. Lotfi, B. Sunden, Q.W. Wang, “An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators”, Applied Energy, Vol. 162, pp. 1282-1302, 2016
[36]. M.T.A. Asadi, F.S. Alkasmoul, M.C.T. Wilson, “Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators”, International Communications in Heat and Mass Transfer, Vol. 74, pp. 40-47, 2016
[37]. R.J. Moffat, “ Describing the Uncertainties in Experimental Results” , Experimental Thermal and Fluid Science, Volume 1, Issue 1, 1989, pp 3-17
電子全文 電子全文(網際網路公開日期:20220804)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔