(34.237.124.210) 您好!臺灣時間:2021/03/02 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅蒂尼
研究生(外文):Dini Faridah
論文名稱:具有環境溫度的混合固體蒸汽壓縮空氣調節系統的性能分析
論文名稱(外文):PERFORMANCE ANALYSIS OF HYBRID SOLID DESICCANT VAPOR-COMPRESSION AIR-CONDITIONING SYSTEMS WITH AMBIENT TEMPERATURE
指導教授:駱文傑駱文傑引用關係
指導教授(外文):Win-Jet Luo
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:混合固體乾燥劑空調系統蒸汽壓縮系統環境效應
外文關鍵詞:hybrid solid desiccantair conditioning systemvapor-compression systemambient effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固體乾燥劑冷卻系統被認為是消耗大量能量的常規空調系統的替代品。在乾燥劑輪和冷卻盤管中,潛在和敏感的負載分開處理和更有效地處理。在本文中,分析了典型固體乾燥劑系統的性能,並與混合固體乾燥劑蒸汽壓縮空調系統和使用熱輪的混合乾燥劑冷卻系統進行了比較。在春季和夏季,台灣台中典型的炎熱潮濕的天氣分析了該系統。混合乾燥劑系統使用冷凝器的餘熱用於乾燥劑輪的再生過程,以去除乾燥劑材料的水分。結果表明,混合乾燥劑冷卻系統具有較高的冷卻能力,COP高於典型的冷卻系統。但混合乾燥劑冷卻與熱輪COP相比略高於混合乾燥劑冷卻。更高的室外溫濕度比可以獲得更好的干燥劑冷卻性能。但如果室外溫度非常高,系統的性能正在下降。這些結果證實混合乾燥劑冷卻系統對於炎熱潮濕的天氣條件是可行的。
Solid desiccant cooling system is considered as alternative to the conventional air conditioning system which consume lot of energy. The latent and sensible loads are handled separately and more effectively in desiccant wheel and cooling coil. In this paper, performance of typical solid desiccant system has been analyzed then compared with hybrid solid desiccant vapor compression air-conditioning system and hybrid desiccant cooling system using thermal wheel. This system has been analyzed at typical hot and humid weather of Taichung, Taiwan during spring and summer season. Hybrid desiccant system use waste heat from condenser for regeneration process at desiccant wheel to removes the moisture at desiccant material. The results show that hybrid desiccant cooling system has higher cooling capacity and its COP higher than typical cooling system. But hybrid desiccant cooling with thermal wheel COP is slightly higher than hybrid desiccant cooling. Higher outdoor temperature and humidity ratio leads to a better desiccant cooling performance. But if the outdoor temperature is very hot, the performance of the system is decreasing. These results confirm that hybrid desiccant cooling system is feasible for hot and humid weather conditions.
ABSTRACT i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS v
TABLE OF FIGURES viii
TABLE OF TABLES xi
NOMENCLATURE xii
1. INTRODUCTION 1
1.1 Research Background 1
1.2 Literature Review for Desiccant Cooling Systems 5
1.3 Work Involved in this thesis 11
2. LITERATURE REVIEW OF HEAT MASS EXCHANGERS AND DESICCANT COOLING SYSTEMS 14
2.1 Consideration for Improving System Performance with Heat Recovery System 14
2.2 Enthalpy Heat Exchanger 14
2.3 Desiccant dehumidifiers 17
2.3.1 Solid Desiccant 19
2.3.2 Liquid Desiccants 22
2.3.3 Comparison between Solid and Liquid Desiccant 23
2.3.4 Heat Source for Regeneration Process 25
2.4 Methods of Dehumidification 27
2.4.1 Mechanical Dehumidifiers 28
2.4.2 Conventional Desiccant System 31
2.4.3 Hybrid Systems 32
3. EXPERIMENTAL SETUP AND SYSTEM WORK PRINCIPAL 34
3.1 Experimental Setup 34
3.1.1 Experimental Site and Time 34
3.2.1 Methods and Experimental Procedures 38
3.2.3 Measuring Instruments 43
3.2 Desiccant Cooling Model Description 45
3.2.1. Typical Desiccant Cooling System 47
3.2.2 Hybrid Desiccant Cooling with Vapor Compression System 48
3.2.3 Hybrid Desiccant Cooling System with Thermal Wheel 49
3.3 Performance Indicator 51
4. RESULTS AND DISCUSSION 55
4.1 Performance of Desiccant Cooling System in the Spring Season 55
4.1.1 Comparison of Performance on Typical and Hybrid Desiccant Cooling System 55
4.1.2 Hybrid Desiccant Cooling System Performance 57
4.1.3 Effect of Ambient Conditions on COP of Hybrid Desiccant Cooling System in Spring Season 60
4.1.4 Sensible and Latent Heat Gains in Hybrid Desiccant Cooling Systems in Spring Season 63
4.2 Performance of Desiccant Cooling System in Summer Season 65
4.2.1 Comparison of Performance on Various Desiccants Cooling System 65
4.2.2 Temperature and Humidity Ratio Analysis for Different Dehumidification Cooling Systems 67
4.2.3 Comparison of energy consumption and cooling capacity on typical DCS, DCS hybrid, and hybrid DCS with thermal wheel in summer season 72
4.2.4 Effect of Ambient Conditions on COP of Three Different Systems in Summer Season 76
4.2.5 Sensible and Latent Heat Gains in Hybrid Desiccant Cooling Systems in Summer Season 81
5. CONCLUSIONS AND RECOMMENDATIONS 86
5.1 Conclusions 86
5.2 Recommendations 88
REFFERENCES 89
1. Wyon, D. P. (2004). The effects of indoor air quality on performance and productivity. Indoor Air, 14(S7), 92-101. doi:10.1111/j.1600-0668.2004.00278.x
2. Enteria, N., & Mizutani, K. (2011). The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable and Sustainable Energy Reviews, 15(4), 2095-2122. doi:10.1016/j.rser.2011.01.013
3. Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to todays Earth System Models. Endeavour, 40(3), 178-187. doi:10.1016/j.endeavour.2016.07.002.
4. IEA. Key world energy statistics. Paris, France: International Energy Agency; 2008.G. A. Bird, Molecular Gas Dynamics, Clarendon Press, Oxford, 1976.
5. IEA. World energy outlook. Paris, France: International Energy Agency; 2004.
6. Choudhury, B., Chatterjee, P., & Sarkar, J. (2010). Review paper on solar-powered air-conditioning through adsorption route. Renewable and Sustainable Energy Reviews, 14(8), 2189-2195. doi:10.1016/j.rser.2010.03.025.
7. Cowan, R. (2015). Beyond Discovery: The Path from Research to Human Benefit is a series produced by the National Academy of Sciences. National Academy of Sciences.
8. UNEP. United Nation environment program. (2000) Handbook for International treatics for protection of the ozone layers, 5th ed. Nairobi, Kenya.
9. Sarbu I, Sebarchievici C. Review of solar refrigeration and cooling systems. Energy Build 2013;67:286–97.
10. Niven, R. M., Fletcher, A. M., Pickering, A. C., A. C., Sivour, J. B., Preeceb, A. R., Francis, H. C. (may 1999). Attempting to control mite allergens with mechanical ventilation and dehumidification in British houses. Journal of Allergy and Clinical Immunology.103(5 Pt 1):756-62.
11. ASHRAE, ASHRAE Handbook – Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, GA, USA, 2001.
12. Evaluation of Mechanical Dehumidification Concepts (2006) Michael F. Taras Carrier Corporation . International Refrigeration and Air Conditioning Conference at Purdue, July 17-20.
13. Han, X., Zhang, X., Wang, L., & Niu, R. (2013). A novel system of the isothermal dehumidification in a room air-conditioner. Energy and Buildings, 57, 14-19. doi:10.1016/j.enbuild.2012.10.039
14. Moon, C., & Bansal, P. (2009). A comparative study of compression–expansion type dehumidification systems to achieve low dew point air. Applied Thermal Engineering, 29(14-15), 3175-3181. doi:10.1016/j.applthermaleng.2009.04.022
15. Sheridan, J., & Mitchell, J. (1985). A hybrid solar desiccant cooling system. Solar Energy, 34(2), 187-193. doi:10.1016/0038-092x(85)90179-3.
16. Worek, W. M., & Chung-Ju, M. (1986). Simulation of an integrated hybrid desiccant vapor-compression cooling system. Energy, 11(10), 1005-1021. doi:10.1016/0360-5442(86)90031-9.
17. Worek, W. M., & Moon, C. (1988). Desiccant integrated hybrid vapor-compression cooling: Performance sensitivity to outdoor conditions. Heat Recovery Systems and CHP, 8(6), 489-501. doi:10.1016/0890-4332(88)90010-5.
18. Khoukhi, M. (2013). The Use of Desiccant Cooling System with IEC and DEC in Hot-Humid Climates. International Journal of Energy Engineering, 3(4), 107-111.
19. Niu, J., Zhang, L., & Zuo, H. (2002). Energy savings potential of chilled-ceiling combined with desiccant cooling in hot and humid climates. Energy and Buildings, 34(5), 487-495. doi:10.1016/s0378-7788(01)00132-3.
20. Mavroudaki, P., Beggs, C., Sleigh, P., & Halliday, S. (2002). The potential for solar powered single-stage desiccant cooling in southern Europe. Applied Thermal Engineering, 22(10), 1129-1140. doi:10.1016/s1359-4311(02)00034-0.
21. Gommed, K., and Grossman, G. (2004). A Liquid Desiccant System for Solar Cooling and. Dehumidification. Journal of Solar Energy Engineering 126:879-885.
22. Halliday, S., Beggs, C., & Sleigh, P. (2002). The use of solar desiccant cooling in the UK: a feasibility study. Applied Thermal Engineering, 22(12), 1327-1338. doi:10.1016/s1359-4311(02)00052-2.
23. Belding, W.A. and Delmas, M.P.F. Novel desiccant cooling system using indirect evaporative cooler, proceeding of American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter meeting, Philadelphia, PA (United States), : Technical and symposium papers, 1997. Volume 103, Part 1; PB: 1136 p.
24. M.F. Taras, System and method for multi-stage dehumidification, US Patent, 2004, 6694756B1.
25. J.T. Knight, Control stability system for moist air dehumidification units and method of operation, US Patent, 2007, 0175227A1.
26. J.T. Knight, System and method for using hot gas reheat for humidity control, US Patent, 2005, 0115254A1.
27. J.S. Whinery, Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space, US Patent, 2002, 6427461B1.
28. A.P. Rafalovich, Heat pump system and methods incorporating subcoolers for conditioning air, US Patent, 1997, 5689962.
29. R.H. Alsenz, Refrigeration sub-cooler and air conditioning dehumidifier, US Patent, 2002, 6338254B1.
30. R.W. Trent, Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus, US Patent, 2003, 6658874B1.
31. D.A. Springer, Integrated dehumidification system, US Patent, 2009, 0277193A1.
32. Enteria, N., Yoshino, H., Mochida, A., Satake, A., Yoshie, R., Takaki, R., . . . Tanaka, Y. (2012). Performance of solar-desiccant cooling system with Silica-Gel (SiO2) and Titanium Dioxide (TiO2) desiccant wheel applied in East Asian climates. Solar Energy, 86(5), 1261-1279. doi:10.1016/j.solener.2012.01.018.
33. Enteria, N., Yoshino, H., Mochida, A., Takaki, R., Yonekura, H., Satake, A., . . . Baba, S. (2010). Corrigendum to ‘Construction and initial operation of the combined solar thermal and electric desiccant cooling system’ [Sol. Energy 83(8) (2009) 1300–1311]. Solar Energy, 84(3), 512. doi:10.1016/j.solener.2010.01.005.
34. Enteria, N., Yoshino, H., Takaki, R., Yonekura, H., Satake, A., & Mochida, A. (2013). First and second law analyses of the developed solar-desiccant air-conditioning system (SDACS) operation during the summer day. Energy and Buildings, 60, 239-251. doi:10.1016/j.enbuild.2013.01.009.
35. Enteria N, Yoshino H, Satake A, Mochida A, Takaki R, Yoshie R, et al. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production. Appl Energy 2010;87:478–86.
36. Francey, J., & Golding, P. (1981). The optical characteristics of swimming pool covers used for direct solar heating. Solar Energy, 26(3), 259-263. doi:10.1016/0038-092x(81)90211-5
37. (n.d.). Retrieved June 25, 2017, from http://cipco.apogee.net/ces/library/tdew.asp
38. Rouquerol, J., & Rouquerol, F. (2014). Methodology of Gas Adsorption. Adsorption by Powders and Porous Solids, 57-104. doi:10.1016/b978-0-08-097035-6.00003-6
39. Hürdoğan, E., Büyükalaca, O., Yılmaz, T., Hepbasli, A., & Uçkan, I. (2012). Investigation of solar energy utilization in a novel desiccant based air conditioning system. Energy and Buildings, 55, 757-764. doi:10.1016/j.enbuild.2012.02.017.
40. Fischer, J. (2002). Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC. doi:10.2172/814310
41. Yang, W., & Tarng, Y. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84(1-3), 122-129. doi:10.1016/s0924-0136(98)00079-x.
42. Quality Engineering: The Taguchi Method. (n.d.). Taguchis Quality Engineering Handbook, 56-123. doi:10.1002/9780470258354.ch4.
43. Yang, Z., Zhang, K., & Lian, Z. (2015). Analysis on the Significance of Effects from Operational Conditions on the Performances of Ultrasonic Atomization Dehumidifier with Liquid Desiccant. Procedia Engineering, 121, 89-94.
44. Seenivasan, D., Selladurai, V., & Senthil, P. (2014). Optimization of Liquid Desiccant Dehumidifier Performance Using Taguchi Method. Advances in Mechanical Engineering, 6, 506487. doi:10.1155/2014/506487
45. Ashrae Handbook 2016 Hvac Systems and Equipment - I-p and Si Editions. (2016). Amer Society of Heating.
46. Dieckmann, John. (2008). Improving Humidity Control with Energy Recovery Ventilation. ASHRAE Journal. 50, no. 8.
47. A review on desiccant based evaporative cooling systems (PDF DownloadAvailable).Availablefrom: https://www.researchgate.net/publication/271841049_A_review_on_desiccant_based_evaporative_cooling_systems#pfe [accessed Jul 10, 2017].
48. Jani, D., Mishra, M., & Sahoo, P. (2016). Experimental investigation on solid desiccant–vapor compression hybrid air-conditioning system in hot and humid weather. Applied Thermal Engineering, 104, 556-564. doi:10.1016/j.applthermaleng.20 16.05.104.
49. Solving humidity in indoor Ice Rinks [Digital image]. (n.d.). Retrieved June 30, 2017, from https://www.munters.com/en/munters/case-studies/ice-rinks-article/
電子全文 電子全文(網際網路公開日期:20220815)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔