(3.232.129.123) 您好!臺灣時間:2021/02/26 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳源盛
研究生(外文):Yuan-Sheng Wu
論文名稱:延伸式浮動閘極結構氧化鋅薄膜電晶體之重金屬離子檢測應用
論文名稱(外文):The Zinc-Oxide based Thin-Film Transistors for the Determination of Metal Ions with Extended-Floating Gate Structures
指導教授:游信強游信強引用關係
指導教授(外文):Hsin-Chiang You
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:氧化鋅溶膠-凝膠法延伸式浮動閘極金屬離子檢測
外文關鍵詞:zinc oxidesol-gelextended-floating gatemetal ions detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中描述利用溶膠-凝膠法,以低溫、簡單的方式,沉積氧化鋅作為薄膜電晶體之通道層,以不同的退火溫度,探討電晶體元件的開/關電流比、臨界電壓及電遷移率。因此,延伸式浮動閘極薄膜電晶體結構,可用於檢測各種溶液中的金屬離子。由於溶液中的金屬離子含量的多寡,會使感應在延伸式浮動閘極上的電位不同,當溶液中的金屬離子從低濃度變為高濃度時,電晶體的臨界電壓會隨之變化,以達到檢測重金屬離子之應用。發展低成本與高靈敏度之水質檢測元件,可即時性檢測溶液中是否有重金屬離子,可為環境安全做進一步把關。
In this study, we demonstrated a new structure, i.e. low temperature and simple processing of sol-gel solution method, to deposit zinc oxide (ZnO) material as channel layer in thin film transistors (TFTs). Further, we have reported the effect of different post-annealing temperatures on electrical characteristics of TFTs such as their Ion / Ioff current ratio, threshold voltage and electrons mobility. Consequently, the extended-floating gate TFT structure was developed for detection of various metal ions concentrations. These results showed that the threshold voltage shifts to negative direction when various metal ions get trapped in the channel layer. In short, we have developed a low-cost and high-sensitivity of solution based TFT devices for the detection of various metal ions towards environmental safety.
摘要 I
Abstract II
致謝 III
第一章、緒論 1
1.1 研究背景 1
1.2 研究目的 5
1.3 論文規劃 5
第二章、文獻回顧 8
2.1 氧化鋅的基本特性介紹 8
2.2 氧化鋅薄膜的製程方法 11
2.2.1.氧化鋅薄膜的沉積方法 11
2.2.2.化學溶液法合成氧化鋅薄膜與奈米材料的製程方式 12
2.2.3.氧電漿處理對表面影響 15
2.2.4.溶膠-凝膠法介紹 16
2.2.5.旋轉塗佈法的原理 17
2.3 薄膜電晶體介紹 18
2.3.1薄膜電晶體(Thin-Film Transistor, TFT)的介紹與應用 18
2.3.2薄膜電晶體的操作機制原理 20
2.3.3臨界電壓 22
2.3.4開關電流比 22
2.3.5電子遷移率 22
2.4 重金屬離子檢測方式 23
2.4.1原子發射光譜法 23
2.4.2原子吸收光譜法 23
2.4.3比色法 25
2.4.4離子感測場效電晶體 27
第三章、退火溫度對氧化鋅薄膜電晶體之影響 29
3.1 實驗步驟與流程 29
3.1.1氧化鋅溶液的製備 29
3.1.2氧化鋅薄膜電晶體的製備 32
3.2 氧化鋅薄膜電晶體之結構 35
3.3 氧化鋅薄膜電晶體之電性分析 37
3.4 退火溫度對於氧化鋅薄膜電晶體之電性探討 38
3.5 結論 53
第四章、延伸式閘極氧化鋅薄膜電晶體之重金屬離子檢測 54
4.1 實驗步驟與流程 54
4.1.1金屬離子溶液的製備 54
4.1.2氧化鋅溶液的製備 56
4.1.3延伸式閘極氧化鋅薄膜電晶體的製備 56
4.2 氧化鋅薄膜電晶體之結構分析 60
4.3 延伸式閘極氧化鋅薄膜電晶體之電性分析 62
4.4 延伸式閘極氧化鋅薄膜電晶體應用於檢測重金屬離子溶液 66
4.4.1不同濃度的銅金屬離子溶液對於氧化鋅薄膜電晶體的電性探討 66
4.4.2不同價電數的金屬離子溶液對於氧化鋅薄膜電晶體的電性探討 79
4.5 結論 89
第五章、結論與未來展望 90
5.1. 結論 90
5.2. 未來展望 91
參考文獻 94

表目錄
表1 1 台灣自來水公司對於水質規範 4
表2 1 氧化鋅的基本特性表 10
表3 1 各種退火溫度的氧化鋅薄膜電晶體特性比較表 52
表4 1 延伸式閘極氧化鋅薄膜電晶體檢測0.1ppm、10ppm、1000ppm濃度的銅金屬離子的特性比較表 78
表4 2 延伸式閘極氧化鋅薄膜電晶體檢測濃度為1000ppm不同價電數的K+、Cu2+、Al3+金屬離子的特性比較表 88

圖目錄
圖1–1 工業廢水來源示意圖 3
圖2–1 六方晶系體結構的氧化鋅 9
圖2–2 (a)花狀 (b) 柱狀 (c,d)線狀的氧化鋅結構 14
圖2–3 歷史上第一個薄膜電晶體結構 19
圖2–4 使用比色法檢測銅金屬離子 26
圖2–5 離子感測場效應電晶體示意圖 28
圖3–1 製備清澈透明的氧化鋅溶液 30
圖3–2 製備氧化鋅溶液的實驗流程圖 31
圖3–3 氧化鋅薄膜電晶體製作流程示意圖 33
圖3–4 氧化鋅薄膜電晶體元件結構圖 34
圖3–5 氧化鋅薄膜電晶體SEM截面圖 36
圖3–6 120度退火1小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 40
圖3–7 120度退火2小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 41
圖3–8 150度退火1小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 42
圖3–9 150度退火2小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 43
圖3–10 180度退火1小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 44
圖3–11 180度退火2小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 45
圖3–12 300度退火1小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 46
圖3–13 300度退火2小時的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 47
圖3–14 比較各種退火溫度的氧化鋅薄膜電晶體的IDS-VGS圖,VDS = 5 V 48
圖3–15 比較各種退火溫度的氧化鋅薄膜電晶體元件特性IDS-VGS圖對IDS開根號的線性函數圖,VDS = 5 V 49
圖3–16 300度退火1小時的氧化鋅薄膜電晶體穩定性測試IDS-VGS圖,VDS = 5 V 50
圖3–17 300度退火1小時的氧化鋅薄膜電晶體穩定性測試IDS-VGS圖對IDS開根號的線性函數圖,VDS = 5 V 51
圖4–1 金屬離子溶液調配的實驗流程圖 55
圖4–2 延伸式閘極氧化鋅薄膜電晶體製作流程示意圖 58
圖4–3 延伸式閘極氧化鋅薄膜電晶體元件結構圖 59
圖4–4 延伸式閘極氧化鋅薄膜電晶體SEM截面圖 61
圖4–5 氮化矽介電層200奈米厚度、300奈米厚度、400奈米厚度的延伸式閘極氧化鋅薄膜電晶體IDS-VGS圖,VDS = 5 V 64
圖4–6 氮化矽介電層300奈米厚度的氧化鋅薄膜電晶體穩定性測試IDS-VGS圖,VDS = 5 V 65
圖4–7 檢測0.1 ppm、10 ppm、1000 ppm濃度的銅金屬離子流程示意圖 69
圖4–8 延伸式閘極氧化鋅薄膜電晶體檢測0.1 ppm、10 ppm、1000 ppm濃度的銅金屬離子元件特性IDS-VGS圖,VDS = 5 V 70
圖4–9 延伸式閘極氧化鋅薄膜電晶體檢測0.1 ppm、10 ppm、1000 ppm濃度的銅金屬離子元件特性IDS-VGS圖對IDS開根號的線性函數圖,VDS = 5 V 71
圖4–10 延伸式閘極氧化鋅薄膜電晶體檢測0.1 ppm、10 ppm、1000 ppm濃度的銅金屬離子元件特性以IDS=5×10-8時對VGS的線性函數圖 72
圖4–11 延伸式閘極氧化鋅薄膜電晶體在截止區狀態時 73
圖4–12 延伸式閘極氧化鋅薄膜電晶體從截止區轉換成飽和區時 74
圖4–13 延伸式閘極氧化鋅薄膜電晶體操作在飽和區狀態時 75
圖4–14 銅金屬離子濃度較低時,延伸式氧化鋅薄膜電晶體操作機制圖 76
圖4–15 銅金屬離子濃度較高時,延伸式氧化鋅薄膜電晶體操作機制圖 77
圖4–16 不同價電數金屬離子檢測流程示意圖 81
圖4–17 延伸式閘極氧化鋅薄膜電晶體檢測濃度為1000 ppm不同價電數的K+、Cu2+、Al3+金屬離子元件特性IDS-VGS圖,VDS = 5 V 82
圖4–18 延伸式閘極氧化鋅薄膜電晶體檢測濃度為1000 ppm不同價電數的K+、Cu2+、Al3+金屬離子元件特性IDS-VGS圖對IDS開根號的線性函數圖,VDS = 5 V 83
圖4–19 延伸式閘極氧化鋅薄膜電晶體檢測濃度為1000 ppm不同價電數的K+、Cu2+、Al3+金屬離子元件特性以IDS=5×10-8時對VGS的線性函數圖 84
圖4–20 檢測鉀金屬離子時,延伸式氧化鋅薄膜電晶體操作機制圖 85
圖4–21 檢測銅金屬離子時,延伸式氧化鋅薄膜電晶體操作機制圖 86
圖4–22 檢測鋁金屬離子時,延伸式氧化鋅薄膜電晶體操作機制圖 87
圖5–1 增加氧化鋅薄膜電晶體靈敏度之示意圖 92
圖5–2 可替換式閘極氧化鋅薄膜電晶體之示意圖 93
[1] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics: Condensed Matter, vol. 16, pp. R829, 2004.
[2] M. Chaari, and A. Matoussi, “Electrical conduction and dielectric studies of ZnO pellets,” Physica B: Condensed Matter, vol. 407, pp. 3441-3447, 2012.
[3] S. J. Seo, J. Hyuck Jeon, Y. Hwan Hwang, & B. S. Bae, “Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors,” Applied Physics Letters, vol. 99, pp. 152102_1-152102_4, 2011.
[4] A. Janotti, , and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on progress in physics, vol. 72, pp. 126501, 2009.
[5] O. Lupan, T. Pauporté, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortes, “Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication,” ACS Applied Materials & Interfaces, vol. 2, pp. 2083-2090, 2010.
[6] S. D. Baek, P. Biswas, J. W. Kim, Y. C. Kim, T. I. Lee, and J. M. Myoung, “Low-Temperature Facile Synthesis of Sb-Doped p-Type ZnO Nanodisks and Its Application in Homojunction Light-Emitting Diode,” ACS applied materials & interfaces, vol. 8, pp. 13018-13026, 2016.
[7] V. Diep, and A. M. Armani, “Flexible light-emitting nanocomposite based on ZnO nanotetrapods,” Nano Letters, vol. 16, pp. 7389-7393, 2016.
[8] J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Zichen Z, Wei L and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” Acs Photonics, vol. 3, pp. 215-222, 2016.
[9] A. Ablat., C. W. Huang, J. Wang, L. Xu, L. Liao, X. Xiao, W. W. Wu, Z. Fan, C. Jiang, J. Li, S. Guo, C. Liu, and T. Guo, “Rational design of ZnO: H/ZnO bilayer structure for high-performance thin-film transistors,” ACS applied materials & interfaces, vol. 8, pp. 7862-7868, 2016.
[10] F. H. Alshammari, P. K. Nayak, Z. Wang, and H. N. Alshareef, “Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics,” ACS Applied Materials & Interfaces, vol. 8, pp. 22751-22755, 2016.
[11] D. Afouxenidis, R. Mazzocco, G. Vourlias, P. J. Livesley, A. Krier, W. I. Milne, O. Kolosov, and G. A. Adamopoulos, “ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air,” ACS applied materials & interfaces, vol. 7, pp. 7334-7341, 2015.
[12] B. J. M. Velazquez, S. Baskaran, A. V. Gaikwad, T. T. Ngo-Duc, X. He, M. M. Oye, M. Meyyappan, T. K. Rout, J. Y. Fu, and S. Banerjee, “Effective piezoelectric response of substrate-integrated ZnO nanowire array devices on galvanized steel,” ACS applied materials & interfaces, vol. 5, pp. 10650-10657, 2013.
[13] X. Li, Y. Chen, A. Kumar, A. Mahmoud, J. A. Nychka, and H. J. Chung, “Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator,” ACS applied materials & interfaces, vol. 7, pp. 20753-20760, 2015.
[14] M. Laurenti, A. Verna, and A. Chiolerio, “Evidence of negative capacitance in piezoelectric ZnO thin films sputtered on interdigital electrodes,” ACS applied materials & interfaces, vol. 7, pp. 24470-24479, 2015.
[15] A. Kołodziejczak-Radzimska, and T. Jesionowski, “Zinc oxide—from synthesis to application: a review,” Materials, vol. 7, pp. 2833-2881, 2014.
[16] Y. Zhaoa, C. Lia, M. Chena, X. Yua, Y. Changa, A. Chenb, H. Zhub, and Z. Tang, “Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition,” Physics Letters A, vol. 380, pp. 3993-3997, 2016.
[17] C. H. Lin, R. S. Chen, Y. K. Lin, S. B. Wang, L. C. Chen, K. H. Chen, M. C. Wen, M. M. C. Chou, and L. Chang, “Photoconduction properties and anomalous power-dependent quantum efficiency in non-polar ZnO epitaxial films grown by chemical vapor deposition,” Applied Physics Letters, vol. 110, pp. 052101, 2017.
[18] T. H. Feng, and X. C. Xia, “Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition,” Optical Materials Express, vol. 6, pp. 3733-3740, 2016.
[19] M. Hasanpoor, M. Aliofkhazraei, and M. Hosseinali, “Electrophoretic Deposition of ZnO–CeO2 Mixed Oxide Nanoparticles,” Journal of the American Ceramic Society, vol.100, pp. 901-910, 2016.
[20] X. Yin, X. Liu, L. Wang, and B. Liu, “Electrophoretic deposition of ZnO photoanode for plastic dye-sensitized solar cells,” Electrochemistry Communications, vol. 12, pp. 1241-1244, 2010.
[21] C. C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Crystal Growth & Design, vol. 11, pp. 5298-5304, 2011.
[22] J. Choi, H. Ji, O. T. Tambunan, I. S. Hwang, H. S. Woo, J. H. Lee, B. W. Lee, C. Liu, S. J. Rhee, C. U. Jung, and G. T. Kim, “Brush-shaped ZnO heteronanorods synthesized using thermal-assisted pulsed laser deposition,” ACS applied materials & interfaces, vol. 3, pp. 4682-4688, 2011.
[23] X. Dai, L. Wang, J. Xu, Y. Wang, A. Zhou, and J. Li, “Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering,” ACS applied materials & interfaces, vol. 6, pp. 15853-15859, 2014.
[24] H. Y. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, and S. Y. Jang, “PbS quantum dot solar cells integrated with sol–gel-derived ZnO as an n-type charge-selective layer,” The Journal of Physical Chemistry C, vol. 118, pp. 17374-17382, 2014.
[25] R. M. Silva, M. C. Ferro, J. R. Araujo, C. A. Achete, G. Clavel, R. F. Silva, and N. Pinna, “Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs,” Langmuir, vol. 32, pp. 7038-7044, 2016.
[26] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide1,” The Journal of Physical Chemistry, vol. 64, pp. 688-691, 1960.
[27] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” Journal of crystal growth, vol. 203, pp. 186-196, 1999.
[28] M. Yoshimura, and K. Byrappa, “Hydrothermal processing of materials: past, present and future,” Journal of Materials Science, vol. 43, pp. 2085-2103, 2008.
[29] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, vol. 10, pp. 013001, 2009.
[30] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, “High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment,” Applied Physics Letters, vol. 100, pp. 202106_1-202106_4, 2012.
[31] S Yang, K. H. Ji, U. K. Kim, C. S. Hwang, S. H. K. Park1, C. S. Hwang, J. Jang, and J. K. Jeong. “Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment,” Applied Physics Letters, vol. 99, pp. 102103, 2011.
[32] E. V. Shun'ko, and V. S. Belkin, “Treatment surfaces with atomic oxygen excited in dielectric barrier discharge plasma of O2 admixed to N2,” AIP Advances, vol. 2, pp. 022157, 2012.
[33] M. Kakihana, “Invited review “sol-gel” preparation of high temperature superconducting oxides,” Journal of Sol-Gel Science and Technology, vol. 6, pp. 7-55, 1996.
[34] L. L. Hench, and J. K. West, “The sol-gel process,” Chemical reviews, vol. 90, pp. 33-72, 1990.
[35] L. Znaidi, “Sol–gel-deposited ZnO thin films: a review,” Materials Science and Engineering: B, vol. 174, pp. 18-30, 2010.
[36] N. Sahu, B. Parija, and S. Panigrahi, “Fundamental understanding and modeling of spin coating process: A review,” Indian Journal of Physics, vol. 83, pp. 493-502, 2009.
[37] P. K. Weimer, “The TFT a new thin-film transistor,” Proceedings of the IRE, vol. 50, pp. 1462-1469, 1962.
[38] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances,” Advanced materials, vol. 24, pp. 2945-2986, 2012.
[39] C. H. Lu, Y. W. Wang, S. L. Ye, G. N. Chen and H. H. Yang, “Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays,” NPG Asia Materials, Vol. 4, pp. 10, 2012.
[40] N. Chen, Y. Zhang, H. Liu, X. Wu, Y. Li, L. Miao, L Miao, Z Shen and A. Wu, “High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms,” ACS Sensors, Vol. 1, pp. 521-527, 2016.
[41] X. Cheng, Y. Zhou, J. Qin and Z. Li, “Reaction-based colorimetric cyanide chemosensors: rapid naked-eye detection and high selectivity,” ACS applied materials & interfaces, Vol. 4, pp. 2133-2138, 2012.
[42] Y. R. Kim, R. K. Mahajan, J. S. Kim and H. Kim, “Highly sensitive gold nanoparticle-based colorimetric sensing of mercury (II) through simple ligand exchange reaction in aqueous media,” ACS applied materials & interfaces, vol. 2, pp. 292-295, 2009.
[43] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Transactions on Biomedical Engineering, vol. 1, pp. 70-71, 1970.
[44] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, vol. 88, pp. 1-20, 2003.
[45] J. S. Lee, Y. J. Kwack, and W. S. Choi, “Inkjet-printed In2O3 thin-film transistor below 200° C,” ACS applied materials & interfaces”, vol. 5, pp. 11578-11583, 2013.
[46] R. A. Street, T. N. Ng, and R. A. Lujan, I. Son, M. Smith, S. Kim, T. Lee, Y. Moon, and S. Cho, “Sol–gel solution-deposited InGaZnO thin film transistors,” ACS applied materials & interfaces, vol. 6, pp. 4428-4437, 2014.
[47] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han, and H. K. Baik, “Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor,” ACS applied materials & interfaces, vol. 5, pp. 8067-8075, 2013.
[48] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, “Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors,” ACS applied materials & interfaces, vol. 5, pp. 3587-3590, 2013.
[49] Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong, and H. J. Kim, “Photobias instability of high performance solution processed amorphous zinc tin oxide transistors,” ACS applied materials & interfaces, vol. 5, pp. 3255-3261, 2013.
[50] N. Liu, Y. Liu, L. Zhu, Y. Shi, and Q. Wan, “Low-cost pH sensors based on low-voltage oxide-based electric-double-layer thin film transistors,” IEEE Electron Device Letters, vol. 35, pp. 482-484, 2014.
[51] L. Liang, S. Zhang, W. Wu, L. Zhu, H. Xiao, Y. Liu, H. Zhang, K. Javaid, and H. Cao, “Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage,” Applied Physics Letters, vol. 109, pp. 173501, 2016.
[52] K. B. Parizi, X. Xu, A. Pal, X. Hu, and H. P. Wong, “ISFET pH Sensitivity: Counter-Ions Play a Key Role,” Scientific Reports, vol. 7, pp. 41305, 2017.
[53] P. Lin, F. Yan and H. L. Chan, “Ion-sensitive properties of organic electrochemical transistors,” ACS applied materials & interfaces, Vol. 2, pp. 1637-1641, 2010.
[54] G. Zhou, J. Chang, S. Cui, H. Pu, Z. Wen, and J. Chen, “Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device,” ACS applied materials & interfaces, vol. 6, pp. 19235-19241, 2014.
電子全文 電子全文(網際網路公開日期:20220719)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔