|
[1] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics: Condensed Matter, vol. 16, pp. R829, 2004. [2] M. Chaari, and A. Matoussi, “Electrical conduction and dielectric studies of ZnO pellets,” Physica B: Condensed Matter, vol. 407, pp. 3441-3447, 2012. [3] S. J. Seo, J. Hyuck Jeon, Y. Hwan Hwang, & B. S. Bae, “Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors,” Applied Physics Letters, vol. 99, pp. 152102_1-152102_4, 2011. [4] A. Janotti, , and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on progress in physics, vol. 72, pp. 126501, 2009. [5] O. Lupan, T. Pauporté, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortes, “Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication,” ACS Applied Materials & Interfaces, vol. 2, pp. 2083-2090, 2010. [6] S. D. Baek, P. Biswas, J. W. Kim, Y. C. Kim, T. I. Lee, and J. M. Myoung, “Low-Temperature Facile Synthesis of Sb-Doped p-Type ZnO Nanodisks and Its Application in Homojunction Light-Emitting Diode,” ACS applied materials & interfaces, vol. 8, pp. 13018-13026, 2016. [7] V. Diep, and A. M. Armani, “Flexible light-emitting nanocomposite based on ZnO nanotetrapods,” Nano Letters, vol. 16, pp. 7389-7393, 2016. [8] J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Zichen Z, Wei L and A. Nathan, “Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs,” Acs Photonics, vol. 3, pp. 215-222, 2016. [9] A. Ablat., C. W. Huang, J. Wang, L. Xu, L. Liao, X. Xiao, W. W. Wu, Z. Fan, C. Jiang, J. Li, S. Guo, C. Liu, and T. Guo, “Rational design of ZnO: H/ZnO bilayer structure for high-performance thin-film transistors,” ACS applied materials & interfaces, vol. 8, pp. 7862-7868, 2016. [10] F. H. Alshammari, P. K. Nayak, Z. Wang, and H. N. Alshareef, “Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics,” ACS Applied Materials & Interfaces, vol. 8, pp. 22751-22755, 2016. [11] D. Afouxenidis, R. Mazzocco, G. Vourlias, P. J. Livesley, A. Krier, W. I. Milne, O. Kolosov, and G. A. Adamopoulos, “ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air,” ACS applied materials & interfaces, vol. 7, pp. 7334-7341, 2015. [12] B. J. M. Velazquez, S. Baskaran, A. V. Gaikwad, T. T. Ngo-Duc, X. He, M. M. Oye, M. Meyyappan, T. K. Rout, J. Y. Fu, and S. Banerjee, “Effective piezoelectric response of substrate-integrated ZnO nanowire array devices on galvanized steel,” ACS applied materials & interfaces, vol. 5, pp. 10650-10657, 2013. [13] X. Li, Y. Chen, A. Kumar, A. Mahmoud, J. A. Nychka, and H. J. Chung, “Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator,” ACS applied materials & interfaces, vol. 7, pp. 20753-20760, 2015. [14] M. Laurenti, A. Verna, and A. Chiolerio, “Evidence of negative capacitance in piezoelectric ZnO thin films sputtered on interdigital electrodes,” ACS applied materials & interfaces, vol. 7, pp. 24470-24479, 2015. [15] A. Kołodziejczak-Radzimska, and T. Jesionowski, “Zinc oxide—from synthesis to application: a review,” Materials, vol. 7, pp. 2833-2881, 2014. [16] Y. Zhaoa, C. Lia, M. Chena, X. Yua, Y. Changa, A. Chenb, H. Zhub, and Z. Tang, “Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition,” Physics Letters A, vol. 380, pp. 3993-3997, 2016. [17] C. H. Lin, R. S. Chen, Y. K. Lin, S. B. Wang, L. C. Chen, K. H. Chen, M. C. Wen, M. M. C. Chou, and L. Chang, “Photoconduction properties and anomalous power-dependent quantum efficiency in non-polar ZnO epitaxial films grown by chemical vapor deposition,” Applied Physics Letters, vol. 110, pp. 052101, 2017. [18] T. H. Feng, and X. C. Xia, “Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition,” Optical Materials Express, vol. 6, pp. 3733-3740, 2016. [19] M. Hasanpoor, M. Aliofkhazraei, and M. Hosseinali, “Electrophoretic Deposition of ZnO–CeO2 Mixed Oxide Nanoparticles,” Journal of the American Ceramic Society, vol.100, pp. 901-910, 2016. [20] X. Yin, X. Liu, L. Wang, and B. Liu, “Electrophoretic deposition of ZnO photoanode for plastic dye-sensitized solar cells,” Electrochemistry Communications, vol. 12, pp. 1241-1244, 2010. [21] C. C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, “Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition,” Crystal Growth & Design, vol. 11, pp. 5298-5304, 2011. [22] J. Choi, H. Ji, O. T. Tambunan, I. S. Hwang, H. S. Woo, J. H. Lee, B. W. Lee, C. Liu, S. J. Rhee, C. U. Jung, and G. T. Kim, “Brush-shaped ZnO heteronanorods synthesized using thermal-assisted pulsed laser deposition,” ACS applied materials & interfaces, vol. 3, pp. 4682-4688, 2011. [23] X. Dai, L. Wang, J. Xu, Y. Wang, A. Zhou, and J. Li, “Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering,” ACS applied materials & interfaces, vol. 6, pp. 15853-15859, 2014. [24] H. Y. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, and S. Y. Jang, “PbS quantum dot solar cells integrated with sol–gel-derived ZnO as an n-type charge-selective layer,” The Journal of Physical Chemistry C, vol. 118, pp. 17374-17382, 2014. [25] R. M. Silva, M. C. Ferro, J. R. Araujo, C. A. Achete, G. Clavel, R. F. Silva, and N. Pinna, “Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs,” Langmuir, vol. 32, pp. 7038-7044, 2016. [26] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide1,” The Journal of Physical Chemistry, vol. 64, pp. 688-691, 1960. [27] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” Journal of crystal growth, vol. 203, pp. 186-196, 1999. [28] M. Yoshimura, and K. Byrappa, “Hydrothermal processing of materials: past, present and future,” Journal of Materials Science, vol. 43, pp. 2085-2103, 2008. [29] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, vol. 10, pp. 013001, 2009. [30] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, “High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment,” Applied Physics Letters, vol. 100, pp. 202106_1-202106_4, 2012. [31] S Yang, K. H. Ji, U. K. Kim, C. S. Hwang, S. H. K. Park1, C. S. Hwang, J. Jang, and J. K. Jeong. “Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment,” Applied Physics Letters, vol. 99, pp. 102103, 2011. [32] E. V. Shun'ko, and V. S. Belkin, “Treatment surfaces with atomic oxygen excited in dielectric barrier discharge plasma of O2 admixed to N2,” AIP Advances, vol. 2, pp. 022157, 2012. [33] M. Kakihana, “Invited review “sol-gel” preparation of high temperature superconducting oxides,” Journal of Sol-Gel Science and Technology, vol. 6, pp. 7-55, 1996. [34] L. L. Hench, and J. K. West, “The sol-gel process,” Chemical reviews, vol. 90, pp. 33-72, 1990. [35] L. Znaidi, “Sol–gel-deposited ZnO thin films: a review,” Materials Science and Engineering: B, vol. 174, pp. 18-30, 2010. [36] N. Sahu, B. Parija, and S. Panigrahi, “Fundamental understanding and modeling of spin coating process: A review,” Indian Journal of Physics, vol. 83, pp. 493-502, 2009. [37] P. K. Weimer, “The TFT a new thin-film transistor,” Proceedings of the IRE, vol. 50, pp. 1462-1469, 1962. [38] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances,” Advanced materials, vol. 24, pp. 2945-2986, 2012. [39] C. H. Lu, Y. W. Wang, S. L. Ye, G. N. Chen and H. H. Yang, “Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays,” NPG Asia Materials, Vol. 4, pp. 10, 2012. [40] N. Chen, Y. Zhang, H. Liu, X. Wu, Y. Li, L. Miao, L Miao, Z Shen and A. Wu, “High-performance colorimetric detection of Hg2+ based on triangular silver nanoprisms,” ACS Sensors, Vol. 1, pp. 521-527, 2016. [41] X. Cheng, Y. Zhou, J. Qin and Z. Li, “Reaction-based colorimetric cyanide chemosensors: rapid naked-eye detection and high selectivity,” ACS applied materials & interfaces, Vol. 4, pp. 2133-2138, 2012. [42] Y. R. Kim, R. K. Mahajan, J. S. Kim and H. Kim, “Highly sensitive gold nanoparticle-based colorimetric sensing of mercury (II) through simple ligand exchange reaction in aqueous media,” ACS applied materials & interfaces, vol. 2, pp. 292-295, 2009. [43] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Transactions on Biomedical Engineering, vol. 1, pp. 70-71, 1970. [44] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, vol. 88, pp. 1-20, 2003. [45] J. S. Lee, Y. J. Kwack, and W. S. Choi, “Inkjet-printed In2O3 thin-film transistor below 200° C,” ACS applied materials & interfaces”, vol. 5, pp. 11578-11583, 2013. [46] R. A. Street, T. N. Ng, and R. A. Lujan, I. Son, M. Smith, S. Kim, T. Lee, Y. Moon, and S. Cho, “Sol–gel solution-deposited InGaZnO thin film transistors,” ACS applied materials & interfaces, vol. 6, pp. 4428-4437, 2014. [47] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. W. Lee, S. W. Han, and H. K. Baik, “Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor,” ACS applied materials & interfaces, vol. 5, pp. 8067-8075, 2013. [48] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, “Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors,” ACS applied materials & interfaces, vol. 5, pp. 3587-3590, 2013. [49] Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong, and H. J. Kim, “Photobias instability of high performance solution processed amorphous zinc tin oxide transistors,” ACS applied materials & interfaces, vol. 5, pp. 3255-3261, 2013. [50] N. Liu, Y. Liu, L. Zhu, Y. Shi, and Q. Wan, “Low-cost pH sensors based on low-voltage oxide-based electric-double-layer thin film transistors,” IEEE Electron Device Letters, vol. 35, pp. 482-484, 2014. [51] L. Liang, S. Zhang, W. Wu, L. Zhu, H. Xiao, Y. Liu, H. Zhang, K. Javaid, and H. Cao, “Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage,” Applied Physics Letters, vol. 109, pp. 173501, 2016. [52] K. B. Parizi, X. Xu, A. Pal, X. Hu, and H. P. Wong, “ISFET pH Sensitivity: Counter-Ions Play a Key Role,” Scientific Reports, vol. 7, pp. 41305, 2017. [53] P. Lin, F. Yan and H. L. Chan, “Ion-sensitive properties of organic electrochemical transistors,” ACS applied materials & interfaces, Vol. 2, pp. 1637-1641, 2010. [54] G. Zhou, J. Chang, S. Cui, H. Pu, Z. Wen, and J. Chen, “Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device,” ACS applied materials & interfaces, vol. 6, pp. 19235-19241, 2014.
|