英文文獻
[1]B. F. Green Jr, et al., 1961, “Baseball: An Automatic Question-Answerer”, Proceedings of the 19th Western Joint IRE-AIEE-ACM Computer Conference, 219-224.
[2]B. Pang, L. Lee, S. Vaithyanathan, 2002, “Thumbs up? : sentiment classification using machine learning techniques”, Proceedings of the ACL-02 conference on Empirical methods in natural language processing, 10:79-86.
[3]B. O’Connor, 2010, “From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series”, Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media,122-129.
[4]C. Cortes, and V. Vapnik, 1995, “Support-Vector Networks”, Journal of Machine Learning, 20(3):273-297.
[5]D. Sullivan, 2001, “Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing, and Sales”, John Wiley & Sons, Inc., New York.
[6]D. Ferrucci, et al.,2010, “Building Watson: An Overview of the DeepQA Project”, Journal of AI magazine, 31(3):59-79.
[7]D. Gräbner, et al., 2012, “Classification of Customer Reviews Based on Sentiment Analysis”, Conference of Information and communication technologies in tourism.
[8]G. W. Brown, and M. T. Cliff, 2004, “Investor Sentiment and the Near-Term Stock Market”, Journal of Empirical Finance, 11(1):1-27.
[9]J. MacQueen, 1967, “Some methods for classification and analysis of multivariate observations”, Berkeley Symp. on Math. Statist. and Prob., 1: 281-297.
[10]J. B. Lovins, 1968, “Development of a Stemming Algorithm”, Journal of Mechanical Translation and Computational Linguistics, 11(1&2):22-31.
[11]J. Han, J. Pei, and M. Kamber, 2011, “Data Mining: Concepts and Techniques”, Elsevier.
[12]K. W. Church, and P. Hanks, 1990, “Word Association Norms, Mutual Information, and Lexicography”, Journal of Computational Linguistics, 16(1):22-29.
[13]M. J. A. Berry, and G. S. Linoff, 1997, “Data Mining Techniques : For Marketing, Sales, and Customer Support”, John Wiley & Sons, Inc., New York.
[14]M. Joshi, et al., 2010, “Movie Reviews and Rev- enues: An Experiment in Text Regression”, Proceedings of HLT’10: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 293-296.
[15]P. D. Turney, 2002, “Thumbs Up or Thumbs Down?: Semantic Orientation Applied to Unsupervised Classification of Reviews”, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 417-424.
[16]S. Bird, E. Klein, and E. Loper, 2009, “Natural Language Processing with Python”, O'Reilly Media, Inc.
[17]Shih-Ming Wang, and Lun-Wei Ku, 2016, “ANTUSD: A Large Chinese Sentiment Dictionary”, Proceedings of the Tenth International Conference on Language Resources and Evaluation, 2697-2702.
[18]T. Loughran, and B. McDonald, 2011, “When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks”, Journal of Finance, 66(1).
[19]T. Mikolov, Wen-Tau Yih, G. Zweig, 2013, “Linguistic Regularities in Continuous Space Word Representations”,Proceedings of NAACL-HLT, 746-751.
[20]T. Mikolov,et al., 2013, “Distributed representations of words and phrases and their compositionality”, NIPS'13 Proceedings of the 26th International Conference on Neural Information Processing Systems, 3111-3119.
[21]T. Mikolov,et al., 2013, “Efficient Estimation of Word Representations in Vector Space”, Journal of Computation and Language.
[22]U. Fayyad, G. P. Shapiro, and P. Smyth, 1996, “From Data Mining to Knowledge Discovery in Databases”,Journal of AI Magazine, 17(3):37-54.
[23]W. J. Wilbu, and K. Sirotkin, 1992, “The Automatic Identification of Stop Words”, Journal of Information Science, 18(1):45–55.
[24]W. J. Frawley, G. P. Shapiro, and C. J. Matheus, 1996, “Knowledge Discovery in Databases: An Overview”, Journal of AI Magazine, 13(3):57-70.
[25]Y. Bengio,et al., 2003, “A neural probabilistic language model”, Journal of Machine Learning Reseach, 3(6): 1137-1155.
[26]Y. XIA, L. WANG, and KAM-FAI WONG, 2008, “Sentiment Vector Space Model for Lyric-Based Song Sentiment Classification”, Journal of Computer Processing of Languages, 21(4):309-330.
中文文獻
[1]王聰仁,2014,不動產交易實價登錄制度之研究,淡江大學,碩士論文。[2]何智明,1998,消費者住屋購買行為關鍵因素之研究-以台北都會區為例,國立中興大學,碩士論文。[3]邱鴻達,2011,意見探勘在中文電影評論之應用,國立交通大學,碩士論文。[4]邱司杰,2014,基於實價登錄的房價模型研究,國立交通大學,碩士論文。[5]吳佳芸,2015,應用探勘技術於社會輿情以預測捷運週邊房地產市場之研究,國立政治大學,碩士論文。[6]林建宇,2010,以資料採礦方法探討國內數位落差之現象,國立政治大學,碩士論文。[7]林承蓁,2011,大臺北地區房地產與房貸利率變動之探討,銘傳大學,碩士論文。
[8]林宜萱,2013,財經領域情緒辭典之建置與其有效性之驗證-以財經新聞為元件,國立臺灣大學,碩士論文。[9]周紹文,2016,探討文字指標對於企業績效的影響,國立中山大學,碩士論文。[10]陳彥甫,2013,使用時間序列模型分析與預測大海氣象,南台科技大學,碩士論文。[11]陳瑋薇,2014,台灣房市泡沫價格研究-兼論擴散與蔓延效果,國立中央大學,碩士論文。[12]陳珍華,2014,巨量資料:公開資料與房仲網的房價分析,國立交通大學,碩士論文。[13]張嘉純,2009,台灣房地產價格與房屋貸款之關聯性研究,國立台灣大學,碩士論文。[14]張金鶚,2013,房地產是一輩子的事:張金鶚的買房、賺屋65問,金尉出版社,台北。
[15]張日威,2014,應用LDA進行Plurk主題分類及使用者情緒分析,國立雲林科技大學,碩士論文。[16]張津挺,2015,中文財務情緒字典建構與其在財務新聞分析之應用,臺北市立大學,碩士論文。[17]張修維,2016,運用資料探勘分析社會輿情與廣告影響房地產行情短期波動行為之研究,國立政治大學,碩士論文。[18]游和正,2012,領域相關詞彙極性分析及文件情緒分類之研究,國立臺灣大學,碩士論文。[19]賀安平,2016,從新聞文章預測股票走勢:使用SVM與LDA演算法,國立高雄應用科技大學,碩士論文。[20]黃博羣,2014,房價指數、房仲類股與房市臉書粉絲專頁之關鍵字關聯性探討,世新大學,碩士論文。[21]黃燕萍,2007,以概念階層為導向之時間序列模式資料探勘-以財務資料庫為例,國立雲林科技大學,博士論文。[22]黃虹荏,2016,房價與少子化因果關係之研究-以台灣六大都市為例,國立政治大學,博士論文。[23]楊勝凱,2004,媒體資訊、品牌態度與住宅偏好對購屋意圖影響之研究,國立成功大學,碩士論文。[24]詹配楟,2012,優惠房貸政策、消費者信心指數與房價:VAR 模型,世新大學,碩士論文。[25]鄒函升,2013,新聞輿情與民意偵測追蹤之研究-大資料之研究取向,國立政治大學,碩士論文。[26]董呈煌等編著,2016,“SVR與OLS在住宅價格預測正確率的比較”,住宅學報,25卷,2期,頁31~55,十二月。
[27]蔡爾逸,2012,應用支撐向量機(SVM)於都市不動產價格預測之研究,國立中央大學,碩士論文。[28]蔡鎮宇,2012,「社群情緒指標」於房地產市場價格關聯之研究,國立交通大學,碩士論文。[29]魏如龍,2003,類神經網路於不動產價格預估效果之研究,國立政治大學,碩士論文。[30]薛弘業,2013,應用文字探勘文件分類分群技術於股價走勢預測之研究-以台灣股票市場為例,國立政治大學,碩士論文。[31]羅意淳,2014,房價高漲薪水不漲,現代人如何完成首次購屋之夢想,元智大學,碩士論文。