|
G. W. E. Council, Global Wind Report 2016, 2016. [2]http://infravest-twonline.com/infravest/TC/4-5.htm. [3]經濟部能源局, 2016年能源產業技術白皮書, 2016. [4]A. Crespo, J. Hernandez, and S. Frandsen, Survey of modelling methods for wind turbine wakes and wind farms, Wind energy, vol. 2, pp. 1-24, 1999. [5]D. Spera, Method for evaluating wind turbine wake effects on wind farm performance, Journal of Solar Energy Engineering, vol. 107, p. 241, 1985. [6]R. J. Barthelmie, S. T. Frandsen, O. Rathmann, K. S. Hansen, E. S. Politis, J. Prospathopoulos, et al., Flow and wakes in large wind farms in complex terrain and offshore, 2008. [7]K. S. Hansen, R. J. Barthelmie, L. E. Jensen, and A. Sommer, The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, vol. 15, pp. 183-196, 2012. [8]N. G. M. Erik L. Petersen, Lars Landberg, and J. H. a. H. P. Frank, Wind Power Meteorology, 1997. [9]T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind energy handbook: John Wiley & Sons, 2001. [10]J. Manwell, J. McGowan, and A. Rogers, Wind Energy Explained Theory Designand and Application, 2nd_Edition, 2009. [11]B. Sanderse, Aerodynamics of wind turbine wakes Literature review, 2009. [12]L. J. Vermeer, J. N. Sørensen, and A. Crespo, Wind turbine wake aerodynamics, Progress in Aerospace Sciences, vol. 39, pp. 467-510, 2003. [13]M. Magnusson and A.-S. Smedman, Air flow behind wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, vol. 80, pp. 169-189, 1999. [14]L. P. Chamorro and F. Porté-Agel, Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study, Boundary-Layer Meteorology, vol. 136, pp. 515-533, 2010. [15]E. Barlas, S. Buckingham, and J. van Beeck, Roughness effects on wind-turbine wake dynamics in a boundary-layer wind tunnel, Boundary-Layer Meteorology, vol. 158, pp. 27-42, 2016. [16]Y. Ohya and T. Uchida, Laboratory and Numerical Studies of the Convective Boundary Layer Capped by a Strong Inversion, Boundary-Layer Meteorology, vol. 112, pp. 223-240, 2004. [17]P.-E. M. Rethore, N. N. Sørensen, A. Bechmann, and F. Zahle, Study of the atmospheric wake turbulence of a CFD actuator disc model, in 2009 European Wind Energy Conference and Exhibition, 2009. [18]W. Tian, A. Ozbay, and H. Hu, Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model, Physics of Fluids, vol. 26, 2014. [19]W. Zhang, C. D. Markfort, and F. Porté-Agel, Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer, Experiments in fluids, vol. 52, pp. 1219-1235, 2012. [20]M. Bastankhah and F. Porté-Agel, A wind-tunnel investigation of wind-turbine wakes in yawed conditions, in Journal of Physics: Conference Series, 2015, pp. 012-014. [21]Y.-T. Wu and F. Porté-Agel, Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study, Energies, vol. 5, pp. 5340-5362, 2012. [22]W. Zhang, C. D. Markfort, and F. Porté-Agel, Wind-turbine wakes in a convective boundary layer: a wind-tunnel study, Boundary-layer meteorology, pp. 1-19, 2013. [23]L. P. Chamorro and F. Porté-Agel, A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects, Boundary-Layer Meteorology, vol. 132, pp. 129-149, 2009. [24]L. P. Chamorro and F. Porté-Agel, Flow characterization of wind-turbine wake (s) developed in a boundary layer flow with different thermal stratifications: A wind-tunnel study, 2010. [25]L. P. Chamorro, N. Tobin, R. Arndt, and F. Sotiropoulos, Variable‐sized wind turbines are a possibility for wind farm optimization, Wind Energy, vol. 17, pp. 1483-1494, 2014. [26]K. Howard, L. Chamorro, and M. Guala, A comparative analysis on the response of a wind-turbine model to atmospheric and terrain effects, Boundary-Layer Meteorology, vol. 158, pp. 229-255, 2016. [27]I. Grant and P. Parkin, A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw, Experiments in Fluids, vol. 28, pp. 368-376, 2000. [28]W. Haans, T. Sant, G. van Kuik, and G. van Bussel, Measurement of tip vortex paths in the wake of a HAWT under yawed flow conditions, Journal of Solar Energy Engineering, vol. 127, pp. 456-463, 2005. [29]R. P. Coleman, A. M. Feingold, and C. W. Stempin, Evaluation of the induced-velocity field of an idealized helicoptor rotor, 1945. [30]T. Sant, Improving BEM-based aerodynamic models in wind turbine design codes, 2007. [31]F. Porté-Agel, Y.-T. Wu, and C.-H. Chen, A Numerical Study of the Effects ofWind Direction on Turbine Wakes and Power Losses in a LargeWind Farm, Energies, vol. 6, pp. 5297-5313, 2013. [32]P. A. Fleming, P. M. Gebraad, S. Lee, J.-W. van Wingerden, K. Johnson, M. Churchfield, et al., Evaluating techniques for redirecting turbine wakes using SOWFA, Renewable Energy, vol. 70, pp. 211-218, 2014. [33]W. Haans, Wind turbine aerodynamics in yaw: unravelling the measured rotor wake, 2011. [34]D. Medici and P. Alfredsson, Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding, Wind Energy, vol. 9, pp. 219-236, 2006. [35]N. Hure, R. Turnar, M. Vašak, and G. Benčić, Optimal wind turbine yaw control supported with very short-term wind predictions, in Industrial Technology (ICIT), 2015 IEEE International Conference on, 2015, pp. 385-391. [36]J.-Y. Li, Improvement on a Blade Performance of a Vertical-Axis Wind Turbine, National Cheng Kung University, Department of Aeronautics and Astronautics thesis, pp. 1-135, 2013. [37]G. Druck, Druck Portable Low Pressure Calibrators DPI 610 LP Series. [38]M. motor, Motor-DCX-12 L. [39]L. V. King, On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 214, pp. 373-432, 1914. [40]D. Collis and M. Williams, Two-dimensional convection from heated wires at low Reynolds numbers, Journal of Fluid Mechanics, vol. 6, pp. 357-384, 1959. [41]H. Bruun, Interpretation of a hot wire signal using a universal calibration law, Journal of Physics E: Scientific Instruments, vol. 4, p. 225, 1971. [42]N. Instruments, NU compactDAQ USB Data Acquition Systems, 2015. [43]陳星儒, 透孔盤旋轉之尾流特性分析, 成功大學航空太空工程學系學位論文, 2016. [44]T. F. Instrumentation, Catalogue section - Cobra Probe. [45]M. Instrument, Remote Optical Laser Sensor ROLS24-W. [46]G. Ingram, Wind turbine blade analysis using the blade element momentum method. version 1.0, School of Engineering, Durham University, UK, 2005. [47]O. d. Vries, Fluid dynamic aspects of wind energy conversion, DTIC Document,1979. [48]Y.-T. Wu and F. Porté-Agel, Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm, Renewable Energy, vol. 75, pp. 945-955, 2015. [49]J. Whelan, J. Graham, and J. Peiro, A free-surface and blockage correction for tidal turbines, Journal of Fluid Mechanics, vol. 624, pp. 281-291, 2009. [50]F. Porté-Agel, Y.-T. Wu, H. Lu, and R. J. Conzemius, Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms, Journal of Wind Engineering and Industrial Aerodynamics, vol. 99, pp. 154-168, 2011. [51]X. Liu, L. Wang, and X. Tang, Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades, Renewable Energy, vol. 57, pp. 111-119, 2013. [52]Y.-T. Wu and F. Porté-Agel, Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations, Boundary-Layer Meteorology, vol. 138, pp. 345-366, 2011.
|