跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:秦懷山
研究生(外文):Chin, Huai-Shan
論文名稱:鋅氧比例對氧化鋅薄膜內部晶體結構與發光特性之影響
論文名稱(外文):Effect of Zinc-Oxygen Ration in Crystal Structure and Luminescence Properties of Zinc Oxide Thin Films
指導教授:趙隆山
指導教授(外文):Chao, Long-Sun
口試委員:周榮華林健正楊證富伏和中
口試委員(外文):Jung-Hua ChouChien-Cheng LinCheng-Fu YangHo-Chung Fu
口試日期:2017-07-17
學位類別:博士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:電致發光光激發光氧化鋅薄膜射頻磁控濺鍍熱退火紫外光可見光
外文關鍵詞:ElectroluminescencePhotoluminescenceZnO thin filmRF magnetron sputterthermal annealingUV lightvisible light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係利用反應性射頻磁控濺鍍法,在室溫下於ITO基板上製備氧化鋅薄膜,並藉由調變不同的氧氣濃度與熱退火參數,探討薄膜內部的鋅氧比例對氧化鋅晶體結構與發光特性之影響。從實驗結果發現,隨著氧氣濃度的增加,薄膜內部的多餘鋅含量有逐漸減少的趨勢,同時結晶情況亦變得明顯。而初鍍完成之氧化鋅薄膜,以高溫爐進行不同溫度與不同持溫時間之熱退火製程後,更能有效改善薄膜內部結晶性與發光特性。於5 mtorr濺鍍壓力與40%氧氣濃度的製程條件下所沉積之氧化鋅薄膜,從其退火後的SEM圖中可以發現,不論是隨著熱退火溫度的升高或持溫時間的延長,氧化鋅晶粒大小均有逐漸成長的趨勢,不過影響程度卻有明顯差異,熱退火溫度對晶粒成長的影響顯然較持溫時間來的大。XRD繞射分析中則觀察到,氧化鋅(002)、(101)、(102)與(103)等結晶方向,會隨著熱退火溫度的升高而逐漸增強;而PL光譜圖則顯示紫外光發光強度會隨熱退火溫度及持溫時間的增加而增強;但當熱退火溫度為600℃或持溫時間達60min時,紫外光放射強度卻開始減弱,甚至還出現微弱的綠光放射峰值,這說明熱退火製程不僅能提升薄膜內部結晶性,同時還有促進薄膜內部缺陷與其他晶相成長的機會,這點可經由實驗中的相關分析結果得到證明。
In this study, a reactive radio frequency magnetron sputtering method was used to deposit zinc oxide (ZnO) thin films on indium tin oxide substrates at room temperature. By changing the oxygen concentrations and thermal annealing parameters, the effects of ZnO ratio on the crystal structure and luminous properties of the ZnO thin films were explored. The experiment results showed that an increase in oxygen concentration gradually decreased excess Zn content in the thin films and made the thin film crystallization situation more noticeable. Next, the as-deposited ZnO thin films were subjected to different temperatures and dwelling times in a heat treatment furnace, which effectively enhanced the internal crystallinity and luminous properties of the thin films. According to the post-annealing scanning electron microscopy image, ZnO thin films deposited under a sputtering pressure and oxygen concentration of 5 mtorr and 40%, respectively, showed progressive increases in ZnO grain size when thermal annealing temperature or dwelling time was increased; however, the effect of thermal annealing temperature increase on ZnO grain size increase was considerably stronger than that of dwelling time increase on ZnO grain size increase. The X-ray diffractometer analysis showed that the crystallization directions of ZnO (002), (101), (102), and (103) gradually improved as thermal annealing temperature increased. The photoluminescence (PL) spectrum showed that ultraviolet (UV) light intensity increased with thermal annealing temperature and dwelling time. Nevertheless, at a thermal annealing temperature of 600 °C or a dwelling time of 60 min, UV light radiation intensity began to weaken and even showed a long wavelength and a weak green light emission peak. Related analysis of experiment results confirmed that the thermal annealing process not only improved the internal crystallinity of the thin films, but also promoted the growth of internal defects and other crystal phases of the thin films.
Abstract (Chinese) i
Abstract (English) ii
Acknowledgements iv
Contents v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1. Background and motivation 1
1.1.1. Market status and trends 1
1.1.2. Properties and materials of electroluminescent 3
1.2. Organization of the thesis 5
Chapter 2 Theoretical Analysis 6
2.1. Luminescence 6
2.1.1. Introduction of light 6
2.1.2. Types and principles governing of luminescent centers 7
2.2. Phosphor materials 10
2.2.1. Introduction of fluorescent materials 10
2.2.2. Types and applications of fluorescent materials 11
2.3. Electroluminescent devices 12
2.3.1. Structure and principles of electroluminescence devices 12
2.3.2. Materials in the different layers of electroluminescence devices 16
2.4 Zinc oxide thin films 19
2.4.1. Introduction of zinc oxide materials 19
2.4.2. Luminance mechanism of zinc oxide thin films 21
2.4.3. Optical properties of zinc oxide thin films 25
2.5 Principle of thin film deposition 26
2.5.1. The phenomenon of deposition 26
2.5.2. Thin film surface and cross-sectional structure 27
2.6 Principle of RF reactive magnetron sputter 28
2.6.1. Radio frequency magnetron sputtering 28
2.6.2. Reactive sputtering 29
Chapter 3 Experimental Procedure and Measurement Methods 32
3.1. Thin film deposition processes 32
3.2. Thermal annealing processes 34
3.3. Analysis of thin film properties 35
3.3.1. Scanning electron microscopy analyses 35
3.3.2. X-ray diffractometer analyses 36
3.3.3. Energy dispersive X-ray spectroscope (EDS) analyses 37
3.3.4. Photoluminescence spectrum analyses 38
Chapter 4 Experiment Results and Discussion 40
4.1. Property analyses of zinc oxide thin films deposited under different oxygen concentrations 40
4.1.1. SEM analysis of ZnO thin film microstructure 40
4.1.2. XRD analysis of ZnO thin film crystallinity 44
4.1.3. Photoluminescence analysis of ZnO thin film luminous properties 45
4.2. Property analysis of zinc oxide thin films deposited under dissimilar thermal annealing processes 47
4.2.1. The effect of different thermal annealing temperatures 48
4.2.1.1. SEM analysis of ZnO thin film microstructure 48
4.2.1.2. XRD analysis of ZnO thin film crystallinity 49
4.2.1.3. Photoluminescence analysis of ZnO thin film luminous properties 50
4.2.2. The effect of different thermal annealing temperatures 52
4.2.2.1. SEM analysis of ZnO thin film microstructure 52
4.2.2.2. Photoluminescence analysis of ZnO thin film luminous properties 53
4.3. Property analysis of zinc oxide thin films deposited under high-pressure, high-oxygen concentration conditions 54
4.3.1. SEM analysis of ZnO thin film microstructure 55
4.3.2. XRD analysis of ZnO thin film crystallinity 56
4.3.3. Photoluminescence analysis of ZnO thin film luminous properties 58
4.3.3.1. Photoluminescence analysis of ZnO thin films with before and after annealed 58
4.3.3.2. Photoluminescence analysis of ZnO thin films with varying crystal structures 60
Chapter 5 Conclusions and Future Works 62
5.1. Conclusions 62
5.2. Future Works 64
References 65
[1].Y. A. Ono, “Electroluminescent displays: Chap. 5 Materials Requirements,” vol. 61, pp. 121-139, 1995.
[2].U. Alver, T. Kilinc, E. Bacaksiz, and S. Nezir, “Temperature dependence of ZnO rods produced by ultrasonic spray pyrolysis method,” Materials Chemistry and Physics, vol. 106, pp. 227-230, 2007.
[3].J. Ye, S. Gu, S. Zhu et al., “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” Journal of Crystal Growth, vol. 243, pp. 151-156, 2002.
[4].Z. Fu, B. Lin, and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
[5].Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. J. Zhang, “Mechanisms of green emission from ZnO films prepared by rf magnetron sputtering,” Optical Materials, vol. 26, pp. 23-26, 2004.
[6].W. Lin, R. Ma, W. Shao, B. Kang, and Z. Wu, “Properties of doped ZnO transparent conductive thin films deposited by RF magnetron sputtering using a series of high quality ceramic targets,” Rare Metals, vol. 27, pp. 32-35, 2008.
[7].D. Kim, T. Shimomura, S. Wakaiki, T. Terashita, and M. Nakayama, “Photoluminescence properties of high-quality ZnO thin films prepared by an RF-magnetron sputtering method,” Physica B: Condensed Matter, vol. 376-377, pp. 741-744, 2006.
[8].S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si,” Optical Materials, vol. 17, pp. 327-330, 2001.
[9].Y. G. Wang, S. P. Lau, et al., “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films,” Chemical Physics Letters, vol. 375, pp. 113-118, 2003.
[10].K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO,” Journal of Crystal Growth, vol. 209, pp. 522-525, 2000.
[11].P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee, and C. C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol-gel technology,” Journal of the European Ceramic Society, vol. 27, pp. 3815-3818, 2007.
[12].S. Hwangbo, Y. J. Lee, and K. S. Hwang, “Photoluminescence of ZnO layer on commercial glass substrate prepared by sol-gel process,” Journal of Crystal Growth, vol. 290, pp. 341-344, 2006.
[13].P. Sagar, P. K. Shishodia, R. M.Mehra, H. Okada, A.Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel derived ZnO films,” Journal of Luminescence, vol. 126, pp. 800-806, 2007.
[14].Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,” Applied Surface Science, vol. 142, pp. 233-236, 1999.
[15].S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” Journal of Vacuum Science and Technology B, vol. 22, pp. 932-948, 2004.
[16].F. Bertram, D. Forster, J. Christen, N. Oleynik, A. Dadgar, and A. Krost, “Microscopic spatial distribution of bound excitons in high-quality ZnO,” Journal of Crystal Growth, vol. 272, pp. 785-788, 2004.
[17].V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” Journal of Applied Physics, vol. 83, pp. 5447-5451, 1998.
[18].T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata and M. Yoshida, “Stable high luminance thin film electroluminescent panels,” Digest of 1974 SID International Symposium, pp. 84-85, 1974.
[19].V. A. L. Roy, A. B. Djurisic, H. Liu and X. X. Zhang, et al. “Magnetic properties of Mn doped ZnO tetrapod structures”, Applied Physics Letters, vol. 84, pp. 756-758, 2004.
[20].S. Chakrabarti, D. Ganguli and S. Chaudhuri, “Photoluminescence of ZnO nanocrystallites confined in sol–gel silica matrix,” Journal of Physics D: Applied Physics, vol. 36, pp. 146-151, 2003.
[21].Z. Fu, B. Yang, L. Li, W. Dong, C. Jia and W. Wu, “An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites,” Journal of Physics: Condensed Matter, vol. 15, pp. 2867-2873, 2003.
[22].J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu, “Luminescence properties of ZnO films annealed in growth ambient and oxygen,” Journal of Crystal Growth, vol. 263, pp. 269-272, 2004.
[23].施敏、李明逵(著),曾俊元(編/譯),“半導體元件物理與製作技術”,國立交通大學出版社,2013年。
[24].楊素華,“場放射顯示器之螢光技術”,電子月刊,pp. 135-142, 2003年。
[25].W. E. Howard, “The importance of insulator properties in a thin-film electroluminescent device,” IEEE Transactions on Electron Devices, vol. 24, pp. 903-908, 1977.
[26].W. E. Howard, “Memory in thin-film electroluminescent devices,” Jorunal of Luminescence, vol. 23, pp. 155-173, 1981.
[27].W. E. Howard, O. Sahni and P. M. Alt, “A simple model for the hysteretic behavior of ZnS:Mn thin film electroluminescent devices,” Journal of Applied Physics, vol. 53, pp. 639- 647, 1982.
[28].趙中興,“顯示器原理與技術”,全華科技圖書股份有限公司,1998年。
[29].Y. A. Ono, “in Encyclopedia of Applied Physics,” edited by G. L. Trigg, VCH Publishers Incorporated, American Institute of Physics, Weinheim and New Youk, vol. 5, pp. 295-325, 1993.
[30].W. Tang, D. C. Cameron, “Electroluminescent zinc sulphide devices produced by sol-gel processing,” Thin Solid Films, vol. 280, pp. 221-226, 1996.
[31].W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Materials Letters, vol. 55, pp. 67-72, 2002.
[32].S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” Journal of the European Ceramic Society, vol. 23, pp. 1593-1598, 2003.
[33].水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系博士論文,2002。
[34].D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells,” Thin Solid films, vol. 354, pp. 227-231, 1999.
[35].P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[36].S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO,” Physica B: Condensed Matter, vol. 308-310, pp. 1197-1200, 2001.
[37].R. Augustine, F. Sarry, N. Kalarikkal, S. Thomas, L. Badie and D. Rouxel, “Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF–TrFE)/ZnO Nanocomposites,” Nano Micro Letters, vol. 8, pp. 282-290, 2016.
[38].Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films,” IEEE transactions on Microwave Theory and Techniques, vol. 49, pp. 769-778, 2001.
[39].K. W. Tay, P. H. Sung, Y. C. Lin and T. J. Hung, “Characteristics of ZnO thin film for film bulk acoustic-wave resonators,” Journal of Electroceramics, vol. 21, pp. 178-183, 2008.
[40].Y. Igasaki and H. Saito, “The effects of zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[41].M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films,” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[42].王敬龍,“以溶膠-凝膠法製備ITO 薄膜之製程研究”,國立成功大學材料科學及工程研究所碩士論文,1996。
[43].許國銓,“科技玻璃-高性能透明導電膜玻璃”,材料與社會,84期,1993年。
[44].C. C. Lin, C. S. Hsiao, S. Y. Chen and S. Y. Cheng, “Ultraviolet emission in ZnO films controlled by point defects,” Journal of The Electrochemical Society, vol. 151, pp. G282-G288, 2004.
[45].Z. Fang, Y. Wang, X. Peng, X. Liu and C. Zhen, “Structural and optical properties of ZnO films grown on the AAO templates,” Materials Letters, vol. 57, pp. 4187-4190, 2003.
[46].H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature,” Materials Science and Engineering: B, vol. 102, pp. 313-316, 2003.
[47].B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” Journal of The Electrochemical Society, vol. 148(3), pp. G110-G113, 2001.
[48].S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition,” Applied Surface Science, vol. 168, pp. 332-334, 2000.
[49].K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photo luminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79(10), pp. 7983-7990, 1996.
[50].W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing,” Nuclear Instruments and Methods in Physics Research Section B, vol. 169, pp. 59-63, 2000.
[51].M. Chen et al., “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Applied Surface Science, vol. 158, pp. 134-140, 2000.
[52].S. H. Jeong, J. H Boo, “Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering,” Thin Solid Films, vol. 447-448, pp. 105-110, 2004.
[53].E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide,” Journal of Applied Physics, vol. 49(3), pp. 1188-1195, 1978.
[54].林素霞,“氧化鋅薄膜的特性改良及應用之研究”,國立成功大學材料科學及工程研究所博士論文,2003。
[55].E. Burstein, “Anomalous optical absorption limit in InSb,” Physical Review, vol. 93, pp. 632-633, 1954.
[56].T. S. Moss, “The interpretation of the properties of Indium Antimonide,” Proceedings of the Physical Society B, vol. 67, pp. 775-782, 1954.
[57].莊達人,“VLSI製造技術”,高立圖書股份有限公司,2013年。
[58].J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science and Technology, vol. 11, pp. 666-698, 1974.
[59].F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,” Journal of Applied Physics, vol. 46, pp. 3381-3384, 1975.
[60].Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou and S. Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions,” Journal of Crystal Growth, vol. 243, pp. 430-443, 2002.
[61].H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “Semiconducting transparent thin films,” Institute of Physics Publishing, Bristol and Philadelphia, pp. 116-122, 1995.
[62].K. H. Yoon, J. W. Choi, and D. H. Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering,” Thin Solid Films, vol. 302, pp. 116-121, 1997.
[63].K. Wasa and S. Hayakawa, “Handbook of sputter deposition technology: Chap 5 deposition of compound thin films,” Noyes, American, pp. 125-146, 1993.
[64].E. M. Bachari, G. Baud, S. Ben Amor and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films, vol. 348, pp. 165-172, 1999.
[65].D. C. Reynolds, D. C. Look and B. Jogni, “Optically pumped ultraviolet lasing from ZnO,” Solid State Communications, vol. 99, pp. 873-875, 1996.
[66].K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, pp.7983-7990, 1996.
[67].E. G. Bylander, “Surface effects on the low-energy cathode luminescence of zinc oxide,” Journal of Applied Physics, vol. 49(3), pp.1188-1195, 1978.
[68].Y. G. Wang, S. P. Lau, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” Journal of Applied Physics, vol. 94, pp. 354-358, 2003.
[69].S. J. Chen, Y. C. Liu, J. G. Ma, D. X. Zhao, Z. Z. Zhi, Y. M. Lu, J. Y. Zhang, D. Z. Shen and X. W. Fan, “High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn,” Journal of Crystal Growth, vol. 240, pp. 467-472, 2002.
[70].T. B. Hur, G. S. Jeen, Y. H. Hwang, and H. K. Kim, “Photoluminescence of polycrystalline ZnO under different annealing conditions,” Journal of Applied Physics, vol. 94, pp. 5787-5790, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊