跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾朝源
研究生(外文):Chao-YuanTseng
論文名稱:對低於質感辨識閾值於螢幕背景上之色彩適應反應時間
論文名稱(外文):The Reaction Time of Color Adaptation for Screen Background below the Threshold of Texture Legibility
指導教授:吳豐光吳豐光引用關係
指導教授(外文):Fong-Gong Wu
學位類別:博士
校院名稱:國立成功大學
系所名稱:工業設計學系
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:108
中文關鍵詞:不同照度色彩閾值色彩適應可視質感
外文關鍵詞:Different IlluminationColor ThresholdColor AdaptationTexture Legibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對人數比例較高的色覺可視性有障礙者(紅綠色盲)及視覺正常者兩群體,試著以兩種不同照度(正常日光照度D65、低照度)的條件下,進行研究探討其有關色彩適應對質感辨識閾值背景的可視性,進而找出彼此互不影響的色彩閾值或質感。主要以基礎螢幕色光的色彩應用如紅、綠、青、黃等色彩,搭配與量測視力有關的Landolt ring,及質感可視的大小、間距做為試驗用刺激物構成,同時採行心理物理學法的理論方式來進行有關實驗。
整個實驗過程先做了兩項前測實驗調查,在第一項前測實驗裡,從10位受測者(5位色覺障礙者-色盲 (Color Vision Deficiency, CVD),5位正常色覺者(Normal Color Vision, NCV)),我們找出其個別的紅色視覺閾值及可視的圖形尺寸關係,分別為CVD:RGB(234,0,21)與NCV:RGB(223,0,32),質感圖形尺寸數值為2.5′(0.436mm)與質感圖形間距為2.5′(0.436mm)。在另一項可視性績效檢測實驗裡,利用螢幕色光:紅色、綠色、青色和黃色這四種背景顏色的適應配合Landolt ring的缺口值尺寸變化,可知當Landolt ring缺口值為3.33′(0.678mm)進行,該刺激物顏色的差異會較顯著。整合兩個前測實驗結果,再規劃出與質感閾值可視性有關的兩項新實驗,受測者為NCV共20位(男女各半)。在新實驗一的質感閾值刺激物構成(背景色 - Landolt ring色)有四種類型,Type 1: RGB(255,0,0) - RGB(234,0,21), Type 2: RGB(255,0,0) - RGB(223,0,32), Type 3: RGB(234,0,21) - RGB(255,0,0) 與 Type 4: RGB(223,0,32) - RGB(255,0,0);新實驗二的質感閾值刺激物構成(前景質感色 - 背景色 - Landolt ring色) 則有六種類型,Type 1: RGB(234,0,21) - RGB(223,0,32) - RGB(255,0,0), Type 2: RGB(223,0,32) - RGB(234,0,21) - RGB(255,0,0), Type 3: RGB(223,0,32) - RGB(255,0,0) - RGB(234,0,21), Type 4: RGB(255,0,0) - RGB(223,0,32) - RGB(234,0,21), Type 5: RGB(234,0,21) - RGB(255,0,0) - RGB(223,0,32) 與 Type 6: RGB(255,0,0) - RGB(234,0,21) - RGB(223,0,32)。
研究結果顯示:(I)以CVD與NCV的紅色閾值應用在Landolt ring時的可視性,對NCV而言,RGB(223,0,32)的閾值是具有顯著的。(II)具有質感圖形尺寸與間距的設定構成及配合Landolt ring時,總可視性平均反應時間在低照度環境時比D65環境照度好。將NCV及CVD紅色閾值兩種色彩各自做為背景色、前景色(Texture Dot)、或Landolt ring色彩時,可以得知以RGB(234,0,21)做為Landolt ring色彩時的可視性錯誤最多,可視性錯誤最少的則是以RGB(234,0,21)做為前景色(Texture Dot)。(III)以色彩適應後所做的可視性平均反應來看,可視性準確度100%的類型在D65環境與低照度環境下經黃色色適應後的Type 5刺激物組合(該組合的前景色為:RGB(234,0,21)、背景色:RGB(255,0,0)、Landolt ring色;RGB(223,0,32))。
在具有質感的刺激物可視性上,當紅色色適應後彼此之間的可視性反應時間優劣關係為:Type 1, Type 5, Type 2 〉 Type 3, Type 6 〉 Type 4。當綠色色適應後彼此之間的可視性反應時間優劣關係為:Type 1, Type 5 〉 Type 2, Type 4 〉 Type 3, Type 6。當青色色適應後彼此之間的可視性反應時間優劣關係為:Type 1, Type 5 〉 Type 2, Type 3, Type 4 〉 Type 6。當黃色色適應後彼此之間的可視性反應時間優劣關係為:Type 1, Type 5 〉 Type 2, Type 4 〉 Type 3, Type 6。
因此依據本研究結果,建議倘若要選用紅色色系配色時,可以運用本研究建議的色彩組合,在配色建議上:若為單純紅色閾值的配色刺激物時,文字或圖形色為RGB(223,0,32)與背景色RGB(255,0,0)的組合;另一種則為具有質感的組合,即前景色為:RGB(234,0,21)、背景色:RGB(255,0,0)、刺激物文字或圖形色;RGB(223,0,32),CVD可以增加對顏色圖像辨識度,且對NCV亦不會造成影響,讓CVD與NCV雙方皆可以在不影響可視性程度下,對物件得到正確的可視性結果。
This study explored, under two different illumination conditions (normal daylight at D65 and low illumination), how chromatic adaptation affected the legibility, texture recognition of background threshold and then found the color threshold or texture that would not affect each other for those with color vision deficiency (CVD) and those who had normal color vision (NCV). The study mainly used the basic screen colors such as red, green, cyan and yellow and the Landolt ring system, associated with vision measurement, and formed them into experiment stimulus with different sizes and spacing, while adopting the psychophysical approach to carry out the related experiment.
There were two preliminary experiments. In one of them, we found the red visual thresholds and visible pattern sizes for the 10 test subjects (5 participants with color vision deficiency, or CVD, and 5 with normal color vision, or NCV) and they were CVD: RGB(234, 0, 21) and NCV: RGB(223, 0, 32), while the size for the texture pattern was 2.5' (0.436mm) and the pitch or spacing was 2.5' (0.436mm). In the experiment for legibility performance, the red, green, cyan and yellow backgrounds were tested with changes in the gap size of Landolt ring, and it was learned that when the gap value was 3.33' (0.678mm), the difference in the stimulus color would be more significant. We compiled the results from the two preliminary experiments and organized another two new experiments for the legibility of texture threshold, with 20 people in the NCV group (10 men and 10 women). For the new experiment I, there were four compositions of stimulus with texture threshold (background color - Landolt ring color) and they were Type 1: RGB(255,0,0) - RGB(234,0,21), Type 2: RGB(255,0,0) - RGB(223,0,32), Type 3: RGB(234,0,21) - RGB(255,0,0) and Type 4: RGB(223,0,32) - RGB(255,0,0). For experiment II, there were six compositions of stimulus with texture threshold (texture dot - background color - Landolt ring color) and they were Type 1: RGB(234,0,21) - RGB(223,0,32) - RGB(255,0,0), Type 2: RGB(223,0,32) - RGB(234,0,21) - RGB(255,0,0), Type 3: RGB(223,0,32) - RGB(255,0,0) - RGB(234,0,21), Type 4: RGB(255,0,0) - RGB(223,0,32) - RGB(234,0,21), Type 5: RGB(234,0,21) - RGB(255,0,0) - RGB(223,0,32) and Type 6: RGB(255,0,0) - RGB(234,0,21) - RGB(223,0,32).
The results of the study showed that, (I) In terms of the legibility of red threshold of CVD and NCV applied to Landolt ring, NCV's threshold at RGB(223,0,32) was significant. (II) With the proper configuration of size and spacing for textured patterns and Landolt ring, the total mean response time for legibility in a low illumination environment is better than that of the D65 environment. We used the red thresholds of NCV and CVD separately as the background color, texture dot and Landolt ring color and learned that RGB(234,0,21) as Landolt ring offered the most errors while RGB(234,0,21) as the texture dot offered the least errors. (III) As for the mean response time of legibility after chromatic adaptation, Type 5 stimulus combination (texture dot: RGB(234,0,21), background color: RGB(255,0,0), Landolt ring color: RGB(223,0,32) after yellow adaptation provided the best visual acuity in D65 environment and low illumination environment.
As for the legibility of textured stimulus, the response times after red color adaptation were ranked at Type 1, Type 5, Type 2 〉 Type 3, Type 6 〉 Type 4. As for the cases after green color adaptation, the order was ranked at Type 1, Type 5 〉 Type 2, Type 4 〉 Type 3, Type 6. For the cyan color adaptation, the order was Type 1, Type 5 〉 Type 2, Type 3, Type 4 〉 Type 6. For the yellow color adaptation, the order was Type 1, Type 5 〉 Type 2, Type 4 〉 Type 3, Type 6.
Based on the results of this study, it is recommended to use the following color combinations when red is chosen as part of the composition: for stimulus with just the red threshold, the combination is having the texts and patterns at RGB(223,0,32) and background color RGB(255,0,0). For stimulus with texture, the texture dot RGB(234,0,21), background color RGB(255,0,0) and the texts or patters for the stimulus is RGB(223,0,32). These can improve the legibility of colored pattern for CVD without affecting NCV, so that both CVD and NCV can obtain the correct legibility results while the legibility is not affected.
中文摘要 I
ABSTRACT III
ACKNOWLEDGMENTS V
CONTENTS VI
LIST OF TABLES IX
LIST OF FIGURES XI
GLOSSARY XIII
CHAPTER 1 – INTRODUCTION 1
1.1. Background and Motivation 1
1.2. Objectives 2
1.3. Research Scope 4
1.4. Research Structure 5
CHAPTER 2 - LITERATURES REVIEW 7
2.1. About Chromatic Theory 7
2.1.1. Color Vision and Visual Adaptability 8
2.1.2. Visual Acuity and Color Vision Deficiency (CVD) 9
2.1.3. Visual Adaptation to the Environment 12
2.2. The Legibility and Adaptation of Visual Texture 13
2.2.1. The Legibility of Visual Texture 13
2.2.2. The Adaptation of Visual Texture 15
2.3. Design of color applications 16
2.3.1. Display Elements and Visual Communication 17
2.3.2. Visual Performance Evaluation and Experimental Methods 18
2.4. SUMMARY 20
CHAPTER 3 – METHODS 22
3.1. PSYCHOPHYSICS 22
3.2. Preliminary Experiment 1:The Composition of Visual and Colors Texture Legibility for Color Vision Deficiency (CVD) 23
3.2.1. Experimental Purpose 24
3.2.2. Experimental Methods and Process 24
3.2.3. The Result of Preliminary Experiment 1 26
3.2.4. Summary 29
3.3. Preliminary Experiment 2:The Chromatic Adaptation of Three Primary on LED Display 30
3.3.1. Experimental Purpose and Methods 30
3.3.2. Experimental Procedure and Results 32
3.3.3. Summary 34
3.4. Discussion of Preliminary Experimental Results 34
3.5. Submit New Hypothesis 35
3.5.1. Red Texture Threshold Setting of Application Hypothesis 35
3.5.2. Texture Size and Pitch Distance Setting of Application Hypothesis 36
3.5.3. The Color Background of the Screen and the Ambient Illumination Setting of Application Hypothesis 37
3.6. Main Experimental Procedures 38
3.6.1. Experimental Equipment and Field Planning 39
3.6.2. Restriction of the Participants 41
3.6.3. Experiment I:Red Color Texture Threshold for Interactive Detection of Visual Performance 42
3.6.4. Experiment II:Visual Performance testing of Color Adaptation with Texture 44
3.6.5. Experimental Evaluation Method 45
CHAPTER 4 – RESULTS 47
4.1. Experiment I: Analysis of Interactive Detection Visual Performance for Red Color Texture Threshold 47
4.1.1. Results of Descriptive Statistics 48
4.1.2. One-Way ANOVA for Three Red Colors of Landolt Ring 50
4.1.3. Independent Samples One-Way ANOVA for Red Thresholds of CVD and NCV as the Color of Landolt ring 52
4.1.4. Independent Samples One-Way ANOVA for Red Thresholds of CVD and NCV as the Background Color 53
4.1.5. Analysis of Subjective Cognitive Results for Experiment I 54
4.1.6. Summary 55
4.2. Experiment II: Visual Performance Analysis of Color Adaptation for Textured Images 55
4.2.1. Results of Descriptive Statistics 55
4.2.2. Independent Samples One-Way ANOVA for Visual Performance of Textured Images and Color Adaptation 59
4.2.3. Repeated Measures One-Way ANOVA for Visual Performance of Textured Images and Color Adaptation 61
4.2.4. One-Way ANOVA for Reaction Time of Legibility after Color Adaptation 62
4.2.5. One-Way ANOVA for Stimulus after Color Adaptation 64
4.2.6. Subjective Cognitive Results 71
4.2.7. Summary 73
CHAPTER 5 - DISCUSSION 74
5.1. Subjective Cognitive Results and Differences for Main Experiment 74
5.2. Visual Legibility Accuracy for the Directionality of Color Texture and Stimulus Samples 75
5.3. Summary 76
CHAPTER 6 - CONCLUSION 79
REFERENCES 81
APPENDIX I. Subjective Cognitive Survey Questionnaire 89
APPENDIX II. The SPSS Statistics Results of Main Experiment I 95
APPENDIX III. The SPSS Statistics Results of Main Experiment II 98
Agrawala, M., Li, W., & Berthouzoz, F. (2011). Design principles for visual communication. Communications of the ACM, 54(4), 60-69.
Alexander, K. R., & Fishman, G. A. (1984). Prolonged rod dark adaptation in retinitis pigmentosa. British journal of ophthalmology, 68(8), 561-569.
AMSC, N., & HFAC, A. A. (1999). DEPARTMENT OF DEFENSE DESIGN CRITERIA STANDARD. Signal, 44(5.3), 4.
Anshel, J. (2005). Visual Ergonomics Handbook (J. Anshel Ed.): June 22, 2005 by CRC Press.
AOA, A. O. A. (2008). Computer Vision Syndrome (CVS). Retrieved June, 11, 2008.
Belmore, S. C., & Shevell, S. K. (2011). Very-long-term and short-term chromatic adaptation: are their influences cumulative? Vision Res, 51(3), 362-366. doi:10.1016/j.visres.2010.11.011
Bhanderi, D. J., Choudhary, S., & Doshi, V. G. (2008). A community-based study of asthenopia in computer operators. Indian journal of ophthalmology, 56(1), 51.
Blehm, C., Vishnu, S., Khattak, A., Mitra, S., & Yee, R. W. (2005). Computer vision syndrome: a review. Survey of ophthalmology, 50(3), 253-262.
Boyce, P. (1973). Age, illuminance, visual performance and preference. Lighting Research and Technology, 5(3), 125-144.
Boynton, R. M. (1979). Human color vision: Holt Rinehart and Winston.
Bridger, R. S. (2005). Introduction to Ergonomics(人因概論) (W. Z. Chen, Cai, D. C., You, M. L., Trans.). Taipei City: Liuho.
Brunborg, E. (2012). Symptoms Of An Epidemic: Web Design Trends. Retrieved from http://www.smashingmagazine.com/2012/03/15/symptoms-of-epidemic-web-design-trends/#comments
Buckley, D., Frisby, J. P., & Blake, A. (1996). Does the human visual system implement an ideal observer theory of slant from texture? Vision Research, 36(8), 1163-1176.
Calongne, C. M. (2001). Designing for web site usability. Journal of Computing Sciences in Colleges, 16(3), 39-45.
Chen, & Guan. (2012). A Visualized Evaluation Method for BEW & Brightness Contrast Analysis of Dynamic Images Information. Journal of Design, 17(1), 59-80.
Chen, Guan, & Lin. (2004). Research On Information Accessibility Evaluation Of Web-Based Learning Resource Pages. Bulletin of Special Education, 26, 45-60.
Chichilnisky, E. J., and Wandell, B. a. (1995). Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching. Vision Research, 35(2), 239-254.
Christ, R. E. (1975). Review and analysis of color coding research for visual displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 17(6), 542-570.
Cobb, P. W., & Moss, F. K. (1928). The four variables of the visual threshold. Journal of the Franklin Institute, 205(6), 831-847.
Collins, M. J., Brown, B., Bowman, K. J., & Caird, D. (1991). Task variables and visual discomfort associated with the use of VDT's. Optometry & Vision Science, 68(1), 27-33.
Craik, J. (2009). Fashion: the key concepts: Berg.
CUDO. (2010). Color Universal Design Organization.
Davson, H. (1962). The Eye: The Visual Process (Vol. 2): Academic Press.
Dong, X., Gao, Y., Lv, L., & Bao, M. (2016). Habituation of visual adaptation. Scientific reports, 6.
Durgin, F. H., & Proffit, D. R. (1996). Visual learning in the perception of texture: simple and contingent aftereffects of texture density. Spatial vision, 9(4), 423-474.
Emsley, H. (1925). Irregular astigmatism of the eye: effect of correcting lenses. Transactions of the Optical Society, 27(1), 28.
Eysenck, M. W., & Keane, M. T. (2010). Cognitive Psychology : A Student's Handbook, 6th Edition: Psychology Press.
Flatla, D. R., Andrade, A. R., Teviotdale, R. D., Knowles, D. L., & Stewart, C. (2015). ColourID: Improving Colour Identification for People with Impaired Colour Vision. Paper presented at the Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
Foley, H., & Matlin, M. (2015). Sensation and perception: Psychology Press.
Frisby, J. (1980). Seeing: Illusion, mind and brain: Oxford: OUP.
Fukuzumi, S. I., Yamazaki, T., Kamijo, K. I., & Hayashi, Y. (1998). Physiological and psychological evaluation for visual display colour readability: a visual evoked potential study and a subjective evaluation study. Ergonomics, 41(1), 89-108.
Gescheider, G. A. (2013). Psychophysics: the fundamentals: Psychology Press.
Gheiratmand, M., & Mullen, K. T. (2014). Orientation tuning in human colour vision at detection threshold. Scientific reports, 4.
Gliem, H., & Schulze, D. (1975). Sofortadaptation, Blendungsempfindlichkeit und diabetische Retinopathie. Klinische Monatsblaetter fuer Augenheilkunde, 166(6).
Goldstein, E. B. (2009). Sensation and Perception: Cengage Learning.
Gould, J. D., Alfaro, L., Barnes, V., Finn, R., Grischkowsky, N., & Minuto, A. (1987). Reading Is Slower from CRT Displays than from Paper: Attempts to Isolate a Single-Variable Explanation. Human Factors: The Journal of the Human Factors and Ergonomics Society, 29(3), 269-299. doi:10.1177/001872088702900303
Graham, N. (1972). Spatial frequency channels in the human visual system: Effects of luminance and pattern drift rate. Vision Research, 12(1), 53-68.
Griggs, R. A. (2014). Psychology: A Concise Introduction: Worth Publishers.
Guironnet, M., Guyader, N., Pellerin, D., & Ladret, P. (2005). Static and dynamic feature-based visual attention model: comparison to human judgment. Paper presented at the Proceedings of European Signal Processing Conference.
Hall, R. H., & Hanna, P. (2004). The impact of web page text-background colour combinations on readability, retention, aesthetics and behavioural intention. Behaviour & information technology, 23(3), 183-195.
Hardin, C. (1988). Color for philosophers: Unweaving the rainbow: Hackett Publishing.
Harpster, J. L., Freivalds, A., Shulman, G. L., & Leibowitz, H. W. . (1989). Visual performance on CRT screens and hard-copy displays. Human Factors, 31, 247-257.
Hermann, L. (1870). Eine erscheinung simultanen contrastes. Pflügers Archiv European Journal of Physiology, 3(1), 13-15.
Horiuchi, K., Kuriki, I., Tokunaga, R., Matsumiya, K., & Shioiri, S. (2014). Chromatic induction from surrounding stimuli under perceptual suppression. Visual neuroscience, 31(06), 387-400.
Huang, Y. S. (2010). 針對色彩知覺障礙者設計之新式三原色辨識系統(A New Primary Colors Identification System Designed for Color Vision Deficiency). (master), National Cheng Kung University.
Ichihara, Y. G., Okabe, M., Iga, K., Tanaka, Y., Musha, K., & Ito, K. (2008). Color universal design: the selection of four easily distinguishable colors for all color vision types. Paper presented at the Electronic Imaging 2008.
Itten, J. (1970). The elements of color (Vol. 4): John Wiley & Sons.
Itten, J. (1974). The Art of Color: The Subjective Experience and Objective Rationale of Color: Wiley.
Jacobs, A. M. (1986). Eye-movement control in visual search: How direct is visual span control? Perception & Psychophysics, 39(1), 47-58.
Jameson, D., Hurvich, L. M., & Varner, F. D. (1979). Receptoral and postreceptoral visual processes in recovery from chromatic adaptation. Proceedings of the National Academy of Sciences, 76(6), 3034-3038.
Juan, L. Y., Guan, S. S. (Producer). (2010). Color perception and creative product design. Science Development. Retrieved from http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/9909/9909-04.pdf
Kaiser, P. K., & Boynton, R. M. (1996). Human color vision (2nd ed.). Washington: Optical Society of America.
Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97(5), 3155-3164.
Kugler, G., M't Hart, B., Kohlbecher, S., Bartl, K., Schumann, F., Einhäuser, W., & Schneider, E. (2015). Visual Search in the Real World: Color Vision Deficiency Affects Peripheral Guidance, but Leaves Foveal Verification Largely Unaffected. Frontiers in human neuroscience, 9.
Kurita, T., & Saito, A. (2002). A characteristic of the temporal integrator in the eye-tracing integration model of the visual system on the perception of displayed moving images. Paper presented at the Proceeding of the IDW’02 conference VHF2.
Lawless, H. T., & Heymann, H. (2010). Color and appearance Sensory Evaluation of Food (pp. 283-301): Springer.
Leccese, F., Salvadori, G., & Rocca, M. (2016). Visual ergonomics of video-display-terminal workstations: Field measurements of luminance for various display settings. Displays, 42, 9-18.
Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985a). Psychophysics of reading—I. Normal vision. Vision Research, 25(2), 239-252.
Legge, G. E., Rubin, G. S., Pelli, D. G., & Schleske, M. M. (1985b). Psychophysics of reading—II. Low vision. Vision Research, 25(2), 253-265.
Lin, C.-C. (2003). Effects of contrast ratio and text color on visual performance with TFT-LCD. International journal of industrial ergonomics, 31(2), 65-72.
Lindgaard, G., Fernandes, G., Dudek, C., & Brown, J. (2006). Attention web designers: You have 50 milliseconds to make a good first impression! Behaviour & information technology, 25(2), 115-126.
Lo, S.-Y., & Yeh, S.-L. (2008). Dissociation of processing time and awareness by the inattentional blindness paradigm. Consciousness and cognition, 17(4), 1169-1180.
McCann, J. (2004). Mechanism of color constancy. Paper presented at the Proc. IS&T/SID Color Imaging Conference, IS&T/ …. http://www.mccannimaging.com/Retinex/Color_Constancy_files/04c%20CIC12.pdf
Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. The Journal of Physiology, 359(1), 381.
Mullen, K. T., & Beaudot, W. (2002). Comparison of color and luminance vision on a global shape discrimination task. Vision Research, 42(5), 565-575.
Mylonas, D., Stutters, J., Doval, V., & Macdonald, L. (2013). Colournamer–a synthetic observer for colour communication. Paper presented at the AIC 2013 12th International Congress-Sage Gateshead, Newcastle, UK.
O'Connor, Z. (2010). Colour harmony revisited. Color Research & Application, 35(4), 267-273.
Okabe, M., & Ito, K. (2008). Color Universal Design (CUD)-How to make figures and presentations that are friendly to Colorblind people. Retrieved from http://jfly.iam.u-tokyo.ac.jp/color/
OSHA. (1997). Working safely with video display terminals. USA: Departmen of labor.
Oyama, T. (1998). Color psychology(色彩心理學). Taipei City: 牧村圖書公司.
Palmer, J. W. (2002). Web site usability, design, and performance metrics. Information systems research, 13(2), 151-167.
Parker, S. (2012). The Web Designer's 101 Most Important Decisions: Professional Secrets for a Winning Website: How Books.
Peterson, M., & Salvagio, E. (2010). Figure-ground perception. Scholarpedia, 5(4), 4320.
Portillo, M. (2010). Color planning for interiors: an integrated approach to color in designed spaces: Wiley. com.
Rheingans, P. (1997). Color perception and applications. Paper presented at the Siggraph’97. Course.
Rinner, O., & Gegenfurtner, K. R. (2000). Time course of chromatic adaptation for color appearance and discrimination. Vision Research, 40(14), 1813-1826.
Rubin, G. S., & Legge, G. E. (1989). Psychophysics of reading. VI—The role of contrast in low vision. Vision Research, 29(1), 79-91.
Sacks, O. (1997). The island of the colour-blind: and, Cycad Island: Pan Macmillan.
Sakamoto, K. (2008). Web+設計の黃金則: Web Color配色虎之卷 : 一本將理論實務化, 並由設計師傳承實務經驗的網頁配色寶典: 旗標出版公司.
Sanders, M. S., & McCormick, E. J. (1998). Human factors in engineering and design: McGraw-Hill New York, NY.
Schrauf, M., & Stern, C. (2001). The visual resolution of Landolt-C optotypes in human subjects depends on their orientation: the’gap-down ‘effect. Neuroscience letters, 299(3), 185-188.
Shieh, K.-K., & Lin, C.-C. (2000). Effects of screen type, ambient illumination, and color combination on VDT visual performance and subjective preference. International journal of industrial ergonomics, 26(5), 527-536.
Smith, M. J., Cohen, B. G., Stammerjohn, L. W., & Happ, A. (1981). An investigation of health complaints and job stress in video display operations. Human Factors: The Journal of the Human Factors and Ergonomics Society, 23(4), 387-400.
Smithson, H. E. (2005). Sensory, computational and cognitive components of human colour constancy. Philosophical transactions of the Royal Society B : biological sciences., 360(1458), 1329-1346.
Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13(4), 215-225.
Tagarelli, A., Piro, A., Tagarelli, G., Lantieri, P. B., Risso, D., & Olivieri, R. L. (2004). Colour blindness in everyday life and car driving. Acta Ophthalmologica Scandinavica, 82(4), 436-442.
Uchikawa, K., Uchikawa, H., & Boynton, R. M. (1989). Partial color constancy of isolated surface colors examined by a color-naming method. Perception, 18(1), 83-91.
Valdez, P., & Mehrabian, A. (1994). Effects of color on emotions. Journal of Experimental Psychology: General, 123(4), 394.
Ware, C., and Cowan, W. B. (1982). Changes in perceived color due to chromatic interactions. Vision Research, 22(11), 1353-1362.
Webster, M. A. (1996). Human colour perception and its adaptation. Network: Computation in Neural Systems, 7(4), 587-634.
Webster, M. A., & Mollon, J. (1995). Colour constancy influenced by contrast adaptation. Nature, 373(6516), 694-698.
Webster, M. A., & Wilson, J. A. (2000). Interactions between chromatic adaptation and contrast adaptation in color appearance. Vision Research, 40(28), 3801-3816.
Wissig, S. C., Patterson, C. A., & Kohn, A. (2013). Adaptation improves performance on a visual search task. Journal of vision, 13(2), 6-6.
Wist, E. R. (1976). Dark adaptation and the Hermann grid illusion. Perception & Psychophysics, 20(1), 10-12.
Wu, F. G., Chou, Y. C., & Tseng, C. Y. (2015b). Influence of Primary Screen Color Landolt-C Rings on Vision Consistency Differentiation Ability. Procedia Manufacturing, 3, 4520-4527.
Wu, F. G., Huang, E., & Tseng, C. Y. (2015a). Texture Recognition for Users with Color Vision Deficiencies. Paper presented at the International Conference on Universal Access in Human-Computer Interaction.
Yang, J., Lin, Y., & Liu, Y. (2016). Stereo chromatic contrast sensitivity model to blue-yellow gratings. Optics Express, 24(5), 4488-4496.
Ziefle, M. (1998). Effects of display resolution on visual performance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(4), 554-568.
Zollinger, H. (1999). Color: Wiley-VCH.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top