(3.238.96.184) 您好!臺灣時間:2021/05/12 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉庭豪
研究生(外文):Ting-HaoLiu
論文名稱:含有側鏈氧化還原集團之聚丙烯酸衍生物:合成與性質鑑定
論文名稱(外文):Poly(Acrylic Acid) Derivatives with Pendent Redox Moieties: Synthesis and Characterization
指導教授:吳文中
指導教授(外文):Wen-Chung Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:苯醌氧化還原液流電池聚丙烯酸
外文關鍵詞:BenzoquinoneRedox flow batteryPoly(Acrylic acid)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今能源趨勢下,如何建構一個長期穩定的能源儲存裝置系統就成為一個能廣泛討論的面相。儲能裝置的概念是在當電力供應過剩時將多餘的電力儲存起來,供應不足的時候再以儲存起來的能量轉回電力供應不足的需求。現今的能源儲存裝置中,電化學儲能系統是最常被使用的,其中氧化還原液流電池是一個富含潛力的大型能源儲能裝置。
本實驗利用含不同比例的P-benzoquinone基團對不同分子量的聚丙烯酸進行改質反應以合成側鏈具有氧化還原官能基的聚丙烯酸衍生物,並進行一系列高分子鑑定以及氧化還原反應相關的測定實驗。使用Benzoquinone基團是因為其反應後可以很好的進行氧化以及還原的反應;另一方面,使用聚丙烯酸來進行改質是因為其可以很好的溶解於水溶液中。最後將這些不同比例Benzoquinone改質後的高分子進行結構鑑定以及電化學性質鑑定。
由UV吸收光譜來看,本研究所製備的聚丙烯酸衍生物都在特定波長有吸收峰值表示聚丙烯酸已經成功的被P-benzoquinone改質。並且經由不同比例的改質,吸收峰值也有所變化進而發現P-benzoquinone投料比越高,取代率也隨之提高。另一個經由IR所得到的結果也可以鑑定結構確實與原本聚丙烯酸相比有所改變。在電化學系統測定中,經由兩個不同的CV系統來測定確定其氧化還原功能確實可行,唯獨P1-1高分子可能在P-benzoquinone含量太低的情況下並沒有氧化還原的訊號存在。
在未來可能進行的實驗中,須將這兩組不同分子量的高分子進行電池置備測試並找尋可以搭配的系統,並且透過結果來決定改良高分子以及單體的分子量、含量以及其他可能影響電池效能的參數。
In this study, we successfully synthesize a series of poly(acrylic acid) derivatives with a benzoquinone moieties. We use different molecular weights of poly(acrylic acid) with different ratios of benzoquinone moieties in order to compare the cost and efficiency for the redox flow battery system in the future. The results from cyclic voltammetry showed that these polymers have half oxidation potentials. With higher ratio of benzoquinone, the oxidation peak shows stronger signal. The results also showed the reversible reduction and oxidation peaks, which indicated that these PAA derivatives are redox polymers and a potential material system for redox flow battery. In the future, we need to find another half-cell system to complete the full redox flow battery system.
目錄
摘要 i
Abstract ii
誌謝 ix
目錄 x
圖目錄 xii
表目錄 xiv
流程圖目錄 xv
第一章、緒論 1
1-1研究背景與文獻回顧 1
1-1-1.電能儲存系統 1
1-1-2電化學電池準則 5
1-1-3能源儲存系統的電池應用 8
1-1-3-1 鉛酸電池 8
1-1-3-2 鎳電池 11
1-1-3-3 鈉硫電池 12
1-1-3-4 鋰離子電池 15
1-1-3-5 金屬空氣電池(Metal-air battery) 18
1-1-4 液流電池 24
1-1-4-1 Iron/Chromium(鐵鉻氧化還原液流電池) 26
1-1-4-2 Bromine/Polysulfide(溴/多硫化物系統) 27
1-1-4-3 all vanadium redox flow battery(全釩型氧化還原液流電池) 28
1-1-4-4 Vanadium/bromine(釩溴系統) 31
1-1-4-5 Hydrogen-based system(氫基底系統) 32
1-1-4-6 Hybrid redox-flow batteries(混和氧化還原電池) 32
1-1-4-6-1 Zinc/bromine(鋅/溴電池) 33
1-1-4-6-2 可溶性鉛酸電池 34
1-1-4-6-3 All iron(全鐵系統) 34
1-2 研究動機及目的 35
第二章、實驗部分 36
2-1 實驗藥品與材料 36
2-2實驗裝置 36
2-3 檢測儀器 37
2-3-2 紫外/可見光分光光譜儀 (UV-VIS Spectrophotometer): 37
2-3-3. 循環伏安法 (Cyclic Voltammetry, CV): 38
2-3-4.傅立葉轉換紅外線光譜儀(FT-IR) 40
2-3-5 奧士瓦黏度計 40
2-4 聚丙烯酸高分子改質 41
第三章、結果與討論 45
3-1 P2分子量鑑定 45
3-2. NMR化學結構鑑定 46
3-2-1 P1 series 1H-NMR圖 49
3-2-2 P2 series 1H-NMR圖 51
3-2-3 IR化學結構鑑定 53
3-3 電化學性質 56
第四章、結論與未來展望 71
第五章、參考文獻 73
[1] Chourabi H, Taewoo N, Walker S, Gil-Garcia JR, Mellouli S, Nahon K, et al. Understanding smart cities: an integrative framework. System Science (HICSS). In: 45th Hawaii International Conference on 2012; 2012. p. 2289-97.
[2] Ahmed NA, Miyatake M, Al-Othman AK. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Convers Manage 2008;49:2711-9
[3] Paul Denholm EE, Kirby Brendan, Milligan Michael. The role of energy storage with renewable electricity generation. 2010.
[4] Ibrahim H, Ilinca A, Perron J. Energy storage systemsdcharacteristics and comparisons. Renew Sustain Energy Rev 2008;12:1221-50.
[5] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.
[6] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Prog Nat Sci 2009;19:291-312.
[7] Bueno C, Carta JA. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew Sustain Energy Rev 2006;10:312-40.
[8] Jaephil Cho, Sookyung Jeong , Youngsik Kim. Commercial and research battery technologies for electrical energy storage applications Progress in Energy and Combustion Science 48 (2015) 84-101
[9] http://www.pdenergy.com/grid-services.php
[10] http://www.pge.com/en/about/environment/pge/cleanenergy/caes/index.pa
ge
[11] Denholm P, Kulcinski GL. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manage 2004;45:2153-72.
[12] Denholm P, Holloway T. Improved accounting of emissions from utility energy storage system operation. Environ Sci Technol 2005;39:9016-22.
[13] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc 2011;158:R55-79.
[14] Energy storage industry grows to integrate wind, solar. Renewable
EnergyWorld.com Available from: http://www.renewableene
rgyworld.com/rea/news/article/2011/08/energy-storage-industry-grows-to-integratewind-solar.
[15] http://electric-crunch.blogspot.tw/2012/12/battery-modeling-in-simulink-matlab.html
[16]Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors?Chem Rev 2004;104:4245-70
[17] Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2009;22:587-603.
[18]http://www.itacanet.org/a-guide-to-lead-acid-battries/part-1-how-lead-acid-batteries-work/
[19]http://www.itacanet.org/a-guide-to-lead-acid-battries/part-1-how-lead-acid-batteries-work/
[20] Salkind AJ, Cannone AG, Trumbure FA. In: Linden D, Reddy TB, editors. Handbook of batteries. 3rd ed. New York: McGraw-Hill; 2002. p. 23. 1-2.
[21] Lead-acid batteries: science and technology/chapter 1-invention and development of the leadeacid battery. p. 3-28.
[22] Lam LT, Haigh NP, Phyland CG, Urban AJ. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation. J Power Sources 2004;133:126-34.
[23] Lam LT, Haigh NP, Phyland CG, Huynh TD. Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles. J Power Sources 2005;144:552-9.
[24] Chih-Chiang H, Meng-Yu L. A study of charging control of lead-acid battery for electric vehicles. Industrial electronics. In: ISIE 2000 Proceedings of the 2000 IEEE International Symposium on 2000, vol. 1; 2000. p. 135-40.
[25] Moseley PT, Nelson RF, Hollenkamp AF. The role of carbon in valve-regulated leadeacid battery technology. J Power Sources 2006;157:3-10.
[26] Shiomi M, Funato T, Nakamura K, Takahashi K, Tsubota M. Effects of carbon in negative plates on cycle-life performance of valve-regulated lead/acid batteries. J Power Sources 1997;64:147-52.
[27] Nakamura K, Shiomi M, Takahashi K, Tsubota M. Failure modes of valveregulated lead/acid batteries. J Power Sources 1996;59:153-7.
[28] Razoumov S, Klementov A, Litvinenko S, Beliakov A. U.S. Patent 6, 222, 723, 2001.
[29] Cooper A, Furakawa J, Lam L, Kellaway M. The UltraBatteryda new battery design for a new beginning in hybrid electric vehicle energy storage. J Power Sources 2009;188:642-9.
[30] http://www.csiropedia.csiro.au/pages/viewpage.action?pageId=426226
[31] NaishC,McCubbinI,EdbergO,HarfootM.Outlookofenergystorage technologies.Brussel:Policydepartmenteconomicandscientific policy; 2007.
[32] http://www.baj.or.jp/e/knowledge/structure.html
[33] http://www.fpbattery.com/ni_mh.html
[34]Energystoragetechnologyprimer:asummary.Availablefrom:〈http://www.nrf.gov.sg/NRF/uploadedFiles/National_Innovation_Challenge/Energy%20Sto rage.pdf〉.
[35] PolletBG,StaffellI,ShangJL.Currentstatusofhybrid,batteryandfuelcell electricvehicles:fromelectrochemistrytomarketprospects.Electrochim Acta 2012;84:235–49.
[36] Kummer JT, Weber N. U.S. Patent 1968, 3413150.
[37] Dufo-Lopez R, Bernal-Agustín JL, Domínguez-Navarro JA. Generation management using batteries in wind farms: economical and technical analysis for Spain. Energy Policy 2009;37:126-39.
[38] https://www.semiconportal.com/en/archive/news/main-news/111026-ngk-nas-battery.html
[39] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, et al. Electrochemical energy storage for Green grid. Chem Rev 2011:3577-613.
[40] Jeffery W, Braithwaite William L, Auxer A. In: Linden D, Reddy TB, editors. Handbook of batteries. 3rd ed. New York: McGraw-Hill; 2002. p. 40-.2.
[41] Oshima T, Kajita M, Okuno A. Development of sodium-sulfur batteries. Int J Appl Ceram Technol 2004;1:269-76.
[42] Virkar AV, Miller GR, Gordon RS. Resistivity-microstructure relations in Lithia-stabilized polycrystalline b00-alumina. J Am Ceram Soc 1978;61:250-2.
[43] Youngblood GE, Miller GR, Gordon RS. Relative effects of phase conversion and grain size on sodium ion conduction in polycrystalline, Lithia-stabilized b-alumina. J Am Ceram Soc 1978;61:86-7.
[44] Sudworth JL, Tilley AR. The sodium sulphur battery. New York: Chapman and Hall Ltd.; 1985.
[45] Song S, Wen Z, Zhang Q, Liu Y. A novel Bi-doped borosilicate glass as sealant for sodium sulfur battery. Part 1: thermophysical characteristics and structure. J Power Sources 2010;195:384-8.
[46] Song S, Wen Z, Liu Y, Lin J, Xu X, Zhang Q. New glass-ceramic sealants for Na/S battery. J Solid State Electr 2010;14:1735-40.
[47] Song S, Wen Z, Liu Y. The effect of substitution of Bi2O3 for alkali oxides on thermal properties, structure and wetting behavior of the borosilicate glass.Mater Lett 2010;64:1025-7.
[48] Tischer RP. The sulphur electrode. New York: Academic Press; 1983.
[49] Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J. Discharge properties of all-solid sodiumesulfur battery using poly (ethylene oxide) electrolyte.J Power Sources 2007;165:450-4.
[50] Park C-W, Ahn J-H, Ryu H-S, Kim K-W, Ahn H-J. Room-temperature solidstate sodium/sulfur battery. Electrochem Solid St 2006;9:A123-5.
[51] Kim J-S, Ahn H-J, Kim I-P, Kim K-W, Ahn J-H, Park C-W, et al. The short-term cycling properties of Na/PVdF/S battery at ambient temperature. J Solid State Electr 2008;12:861-5.
[52] Wang J, Yang J, Nuli Y, Holze R. Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem Commun 2007;9:31-4.
[53] Ryu H, Kim T, Kim K, Ahn J-H, Nam T, Wang G, et al. Discharge reaction mechanism of room-temperature sodiumesulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J Power Sources 2011;196:5186-90.
[54] Lu X, Kirby BW, XuW, Li G, Kim JY, Lemmon JP, et al. Advanced intermediatetemperature Na-S battery. Energ Environ Sci 2013;6:299-306.
[55] http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery1.htm
[56] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.
[57] Grant ME. In: Linden D, Reddy TB, editors. Handbook of batteries. 3rd ed.New York: McGraw-Hill; 2002. p. 35. 1.
[58] Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K, Amine K, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 2012;51:9994e10024.
[59] Howell D. DOE progress report for energy storage research and development. Washington, DC: US Department of Energy; 2008.
[60] Gaines L, Cuenca R. Costs of lithium-ion-batteries for vehicles. Argonne, IL:Argon National Laboratory; 2000.
[61] Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, et al. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources 2010;195:3720-9.
[62] Wang W, Choi D, Yang Z. Li-ion battery with LiFePO4 cathode and Li4Ti5O12 anode for stationary energy storage. Metall Mat Trans A 2013;44:21-5.
[63] Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, et al. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc 2009;156:A1041-6.
[64] Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications.J Power Sources 2011;196:3949-54.
[65] Wang Y, Wang Y, Hosono E, Wang K, Zhou H. The design of a LiFePO4
/carbon nanocomposite with a coreeshell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 2008;47:7461-5.
[66] Sun C, Rajasekhara S, Goodenough JB, Zhou F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 2011;133:2132-5.
[67] Caballero A, Cruz-Yusta M, Morales J, Santos-Pe~na J, Rodríguez
-Castell_on E.A new and fast synthesis of nanosized LiFePO4 electrode materials. Eur JInorg Chem 2006;2006:1758-64.
[68] Kim J-K, Scheers J, Hwang G-C, Zhao X, Kang S, Johansson P, et al. Role of lithium precursor in the structure and electrochemical performance of
LiFePO4. Scr Mater 2013;69:716-9.
[69] Linden D, Reddy TB. Handbook of batteries. 3rd ed. New York: McGraw
-Hill;2002.
[70] Kinoshita K. Electrochemical oxygen technology. New York: Wiley; 1992.
[71] Ian Kowalczk JR, Salomon Mark. Li-air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 2007;79:851-60.
[72] McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC. Solvents'critical role in nonaqueous lithiumeoxygen battery electrochemistry. J Phys Chem Lett 2011;2:1161-6.
[73] http://emuch.net/html/201202/4071263.html
[74] Jang-Soo Lee , Taemin Lee , Hyun-Kon Song , Jaephil Cho and Byeong-Su Kim.Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy Environ. Sci., 2011, 4, 4148-4154
[75] Chakkaravarthy C, Waheed AKA, Udupa HVK. Zincdair alkaline batteriesda review. J Power Sources 1981;6:203-28.
[76] Lee CW, Sathiyanarayanan K, Eom SW, Kim HS, Yun MS. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. J Power Sources 2006;159:1474-7.
[77] Goldstein J, Brown I, Koretz B. New developments in the Electric Fuel Ltd.zinc/air system. J Power Sources 1999;80:171-9.
[78] Sapkota P, Kim H. Zinceair fuel cell, a potential candidate for alternative
energy. J Ind Eng Chem 2009;15:445-50.
[79] Drillet J-F, Adam M, Barg S, Herter A, Koch D, Schmidt V, et al. Development of a novel Zinc/air fuel cell with a Zn foam anode, a PVA/KOH membrane and a MnO2/SiOC-based air cathode. ECS Trans 2010;28:13-24.
[80] Toussaint G, Stevens P, Akrour L, Rouget R, Fourgeot F. Development of a rechargeable zinc-air battery. ECS Trans 2010;28:25-34.
[81] Shaigan N, Qu W, Takeda T. Morphology control of electrodeposited zinc
from alkaline Zincate solutions for rechargeable zincair batteries.ECSTrans 2010;28:35-44.
[82] Yang C-C, Lin S-J. Improvement of high-rate capability of alkaline ZneMnO2 battery. J Power Sources 2002;112:174-83.
[83] Zhang XG. Fibrous zinc anodes for high power batteries. J Power Sources
2006;163:591-7.
[84] Devyatkina TI, Gun'ko YL, Mikhalenko MG. Development of ways to diminish corrosion of zinc electrode. Russ J Appl Chem 2001;74:1122-5.
[85] Müller S, Holzer F, Haas O. Optimized zinc electrode for the rechargeable
zinceair battery. J Appl Electrochem 1998;28:895-8.
[86] Lee CW, Sathiyanarayanan K, Eom SW, Yun MS. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J Power Sources 2006;160:1436-41.
[87] Cho Y-D, Fey GT-K. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution. J Power Sources 2008;184:610-6.
[88] Zhu L, Zhang H, Li W, Liu H. New modification procedure of zinc powder in neodymium nitrate solution for improving the electrochemical properties of alkaline zinc electrodes. J Phys Chem Solids 2009;70:45-54.
[89] Appleby AJ, Jacquier M. The C.G.E. circulating zinc/air battery: a practical vehicle power source. J Power Sources 1976;1:17-34.
[90] Fauvarque JF, Guinot S, Bouzir N, Salmon E, Penneau JF. Alkaline poly(-ethylene oxide) solid polymer electrolytes. Application to nickel secondary batteries. Electrochim Acta 1995;40:2449-53.
[91] Lewandowski A, Skorupska K, Malinska J. Novel poly(vinyl alcohol)e
KOHeH2O alkaline polymer electrolyte. Solid State Ionics 2000;133:265-71.
[92] Saputra H, Othman R, Sutjipto AGE, Muhida R. MCM-41 as a new separator material for electrochemical cell: application in zinceair system. J Membr Sci 2011;367:152-7.
[93] Mohamad AA. Zn/gelled 6M KOH/O2 zinceair battery. J Power Sources
2006;159:752-7.
[94] J€orissenL.Bifunctional oxygen/air electrodes. J Power Sources
2006;155:23-32.
[95] Cheng H-H, Tan C-S. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources 2006;162:1431-6.
[96] Deiss E, Holzer F, Haas O. Modeling of an electrically rechargeable alkaline Zneair battery. Electrochim Acta 2002;47:3995-4010.
[97] Müller S, Striebel K, Haas O. La0.6Ca0.4CoO3: a stable and powerful catalyst for bifunctional air electrodes. Electrochim Acta 1994;39:1661-8.
[98] Lee J-S, Lee T, Song H-K, Cho J, Kim B-S. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries. Energ Environ Sci 2011;4:4148-54.
[99] Gara M, Compton RG. Activity of carbon electrodes towards oxygen reduction in acid: a comparative study. New J Chem 2011;35:2647-52.
[100] Wang X, Lee JS, Zhu Q, Liu J, Wang Y, Dai S. Ammonia-treated ordered
mesoporous carbons as catalytic materials for oxygen reduction reaction.
Chem Mater 2010;22:2178-80.
[101] Yang W, Fellinger T-P, Antonietti M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 2010;133:206-9.
[102] Shanmugam S, Osaka T. Efficient electrocatalytic oxygen reduction over
metal free-nitrogen doped carbon nanocapsules. Chem Commun 2011;47:
4463-5.
[103] Kannan R, Bipinlal U, Kurungot S, Pillai VK. Enhanced electrocatalytic performance of functionalized carbon nanotube electrodes for oxygen reduction in proton exchange membrane fuel cells. Phys Chem Chem Phys 2011;13:10312-7.
[104] Kim H, Lee K, Woo SI, Jung Y. On the mechanism of enhanced oxygen
reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem
Chem Phys 2011;13:17505-10.
[105] Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, et al. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotubebased catalyst. Nat Commun 2013:4.
[106] Lee J-S, Park GS, Lee HI, Kim ST, Cao R, Liu M, et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient
electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett 2011;11:5362-6.
[107] Lee J-S, Park GS, Kim ST, Liu M, Cho J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped Ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew Chem Int Ed 2013;52:1026-30.
[108] Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries.
J Mater Chem A 2014;2:7188-96.
[109] Wang X, Sebastian PJ, Smit MA, Yang H, Gamboa SA. Studies on the oxygen reduction catalyst for zinceair battery electrode. J Power Sources 2003;124:278-84.
[110] Neburchilov V, Wang H, Martin JJ, Qu W. A review on air cathodes for
zinceair fuel cells. J Power Sources 2010;195:1271-91.
[111] Wei Z, Huang W, Zhang S, Tan J. Carbon-based air electrodes carrying MnO2 in zinceair batteries. J Power Sources 2000;91:83-5.
[112] Yang W, Salim J, Li S, Sun C, Chen L, Goodenough JB, et al. Perovskite
Sr0.95Ce0.05CoO3-d loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J Mater Chem 2012;22:18902-7.
[113] Gorlin Y, Jaramillo TF. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 2010;132:13612-4.
[114] Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 2012;69:295-300.
[115] Eckroad S. Handbook of energy storage for transmission or distribution applications. Electric Power Research Institute Report 1007189, California, USA. 2002.
[116]WeberZ,MenchMM,MeyersJP,RossPN,GostickJT,LiuQ.Redox flow batteries: areview.JournalofAppliedElectrochemistry2011;41:1137–64.
[117]Xiong B,ZhaoJ,TsengKJ,Skyllas-KazacosM,LimTM,ZhangY.Thermal hydraulicbehaviorandefficiency analysisofanall-vanadiumredox flow battery. JournalofPowerSources2013;242:314–24.
[118] Adam Z. Weber, Matthew M. Mench, Jeremy P. Meyers, Philip N. Ross, Jeffrey T. Gostick,Qinghua Liu. Redox flow batteries: a review.J Appl Electrochem(2011)41:1137-1164
[119] Thaller LH (1974) NASA TM-X-71540
[120] Thaller LH (1979) NASA TM-79143, DOE/NASA/1002-79/3
[121] Bartolozzi M (1989) J Power Sources 27:219
[122] Price A, Bartley S, Male S, Cooley G (1999) Power Eng J 13:122
[123] Lessner P, Mclarnon F, Winnick J, Cairns E (1992) J Appl Electrochem 22:927
[124] http://www.uetechnologies.com/technology.htm
[125] Kazacos M, Skyllas-Kazacos M. Performance characteristics of carbon plastic electrodes in the all-vanadiumredox cell. J ElectrochemSoc1989;136:2759-60.
[126] Kazacos M, Cheng M, Skyllas-Kazacos M. Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 1990;20:463-7.
[127] Leung P, Li X, Ponce de Leon C, Berlouis L, Low CTJ, Walsh FC. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv 2012;2:10125-56.
[128] Skyllas-Kazacos M, Menictas C, Kazacos M. Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell. J Electrochem Soc 1996;143:L86-8.
[129] Rahman F, Skyllas-Kazacos M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J Power Sources 1998;72:105-10.
[130] Skyllas-Kazacos M, Peng C, Cheng M. Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery.Electrochem Solid St 1999;2:121-2.
[131] Rahman F, Skyllas-Kazacos M. Vanadium redox battery: positive half-cell electrolyte studies. J Power Sources 2009;189:1212-9.
[132] Rychcik M, Skyllas-Kazacos M. Evaluation of electrode materials for vanadium redox cell. J Power Sources 1987;19:45-54.
[133] Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 2011;4:1147-60.
[134] Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery applicationdI. Thermal treatment. ElectrochimActa 1992;37:1253-60.
[135] Zhu HQ, Zhang YM, Yue L, Li WS, Li GL, Shu D, et al. Graphiteecarbon nanotube composite electrodes for all vanadium redox flow battery. J Power Sources 2008;184:637-40.
[136] Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, et al. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries.J Power Sources 2010;195:4375-9.
[137] Park M, Jung Y-j, Kim J, Lee Hi, Cho J. Synergistic effect of carbon nanofiber/ nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett 2013;13:4833-9.
[138] Xing F, Zhang H, Ma X. Shunt current loss of the vanadium redox flow battery.J Power Sources 2011;196:10753-7.
[139] Skyllas-Kazacos M (2003) J Power Sources 124:299
[140] Skyllas-Kazacos M, Limantari Y (2004) J Appl Electrochem 34:681
[141] Vafiadis H, Skyllas-Kazacos M (2006) J Membr Sci 279:394
[142] Skyllas Kazacos M, Kazacos G, Poon G, Verseema H (2010) Int J Energy Res 34:182
[143] Chang BJ, Garcia CP, Johnson DW, Bents DJ, Scullin VJ, Jakupca IJ (2007) J Fuel Cell Sci Technol 4:497
[144] Grigoriev SA, Millet P, Porembsky VI, Fateev VN (2011) Int J Hydrogen Energy 36:4164
[145] Li XJ, Xiao Y, Shao ZG, Yi BL (2010) J Power Sources 195:4811
[146] Mitlitsky F, Myers B, Weisberg AH (1998) Energy Fuels 12:56
[147] Neyerlin KC, Gu WB, Jorne J, Gasteiger HA (2006) J Electrochem Soc 153:A1955
[148] Kim JT, Jorne J (1977) J Electrochem Soc 124:1473
[149] Kosek JA, Laconti AB (1988) J Power Sources 22:293
[150] Livshits V, Ulus A, Peled E (2006) Electrochem Commun 8:1358
[151] Cathro KJ, Cedzynska K, Constable DC (1987) J Power Sources 19:337
[152] Mader MJ, White R (1986) J Electrochem Soc 133:1297
[153] Hromadova M, Ronald Fawcett W (2001) J Phys Chem A105:104
[154] Lim HS, Lackner AM, Knechtli RC (1977) J Electrochem Soc 124:1154
[155] R. Ltd. (2011) URL: http://www.redflow.com.au/. Accessed May 2011
[156] Jorne J, Kim JT, Kralik D (1979) J Appl Electrochem 9:573
[157] Zito R (1973) US Patent 3719526
[158] Hruska LW, Savinell RF (1981) J Electrochem Soc 128:18
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔