|
[1]J. Shi, D. Ahmed, X. Mao, and T. J. Huang, Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels, in Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on, 2008, pp. 26-29. [2]H. Li, J. R. Friend, and L. Y. Yeo, A scaffold cell seeding method driven by surface acoustic waves, Biomaterials, vol. 28, pp. 4098-4104, 2007. [3]L. Rayleigh, On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society, vol. 1, pp. 4-11, 1885. [4]R. White and F. Voltmer, Direct piezoelectric coupling to surface elastic waves, Applied physics letters, vol. 7, pp. 314-316, 1965. [5]J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, vol. 9, pp. 3354-3359, 2009. [6]A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, Acoustofluidics 5: Building microfluidic acoustic resonators, Lab on a Chip, vol. 12, pp. 684-695, 2012. [7]C. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic press, 1998. [8]B. Matthias and J. Remeika, Ferroelectricity in the ilmenite structure, Physical Review, vol. 76, p. 1886, 1949. [9]K. Yosioka and Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acta Acustica united with Acustica, vol. 5, pp. 167-173, 1955. [10]J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. Huang, Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab on a Chip, vol. 8, pp. 221-223, 2008. [11]J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, et al., Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, vol. 11, pp. 2319-2324, 2011. [12]S. Kerbel, Design of harmonic surface acoustic wave (SAW) oscillators without external filtering and new data on the temperature coefficient of quartz, in 1974 Ultrasonics Symposium Proceedings, 1974, pp. 276-281. [13]T. Saiki, K. Okada, and Y. Utsumi, Highly efficient liquid flow actuator operated by surface acoustic waves, Electronics and Communications in Japan, vol. 94, pp. 10-16, 2011. [14]J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, A. Lawit, and T. J. Huang, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW), Lab on a Chip, vol. 9, pp. 2890-2895, 2009. [15]A. A. Nawaz, Y. Chen, N. Nama, R. H. Nissly, L. Ren, A. Ozcelik, et al., Acoustofluidic fluorescence activated cell sorter, Analytical chemistry, vol. 87, pp. 12051-12058, 2015. [16]S. Li, F. Ma, H. Bachman, C. E. Cameron, X. Zeng, and T. J. Huang, Acoustofluidic bacteria separation, Journal of Micromechanics and Microengineering, vol. 27, p. 015031, 2016. [17]Q. Zeng, H. Chan, X. Zhao, and Y. Chen, Enhanced particle focusing in microfluidic channels with standing surface acoustic waves, Microelectronic Engineering, vol. 87, pp. 1204-1206, 2010. [18]N. Nama, R. Barnkob, Z. Mao, C. J. Kähler, F. Costanzo, and T. J. Huang, Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves, Lab on a Chip, vol. 15, pp. 2700-2709, 2015. [19]Z. Mao, Y. Xie, F. Guo, L. Ren, P.-H. Huang, Y. Chen, et al., Experimental and numerical studies on standing surface acoustic wave microfluidics, Lab on a chip, vol. 16, pp. 515-524, 2016. [20]H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab on a Chip, vol. 12, pp. 20-28, 2012. [21]I. Leibacher, S. Schatzer, and J. Dual, Impedance matched channel walls in acoustofluidic systems, Lab on a Chip, vol. 14, pp. 463-470, 2014. [22]M. Li, W. H. Li, J. Zhang, G. Alici, and W. Wen, A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation, Journal of Physics D-Applied Physics, vol. 47, p. 29, Feb 2014. [23]D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proceedings of the National Academy of Sciences, vol. 104, pp. 18892-18897, 2007. [24]J. Zhang, S. Yan, R. Sluyter, W. Li, G. Alici, and N.-T. Nguyen, Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel, Scientific reports, vol. 4, 2014. [25]C. W. Yung, J. Fiering, A. J. Mueller, and D. E. Ingber, Micromagnetic–microfluidic blood cleansing device, Lab on a Chip, vol. 9, pp. 1171-1177, 2009. [26]S. Park, Y. Zhang, T.-H. Wang, and S. Yang, Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity, Lab on a Chip, vol. 11, pp. 2893-2900, 2011. [27]J. Nam, H. Lim, D. Kim, and S. Shin, Separation of platelets from whole blood using standing surface acoustic waves in a microchannel, Lab on a Chip, vol. 11, pp. 3361-3364, 2011. [28]P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, et al., Acoustic separation of circulating tumor cells, Proceedings of the National Academy of Sciences, vol. 112, pp. 4970-4975, 2015. [29]F. Guo, P. Li, J. B. French, Z. Mao, H. Zhao, S. Li, et al., Controlling cell-cell interactions using surface acoustic waves, Proc Natl Acad Sci U S A, vol. 112, pp. 43-8, Jan 6 2015. [30]J. Lee, C. Rhyou, B. Kang, and H. Lee, Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes, Journal of Physics D: Applied Physics, vol. 50, p. 165401, 2017. [31]H. Tsutsui and C. M. Ho, Cell separation by non-inertial force fields in microfluidic systems, Mechanics Research Communications, vol. 36, pp. 92-103, Jan 2009. [32]P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, vol. 101, pp. 87-96, Feb 2006. [33]P. J. L. Williams, Biofuel: microalgae cut the social and ecological costs, Nature, vol. 450, pp. 478-478, Nov 2007. [34]L. Gouveia and A. C. Oliveira, Microalgae as a raw material for biofuels production, Journal of industrial microbiology & biotechnology, vol. 36, pp. 269-274, 2009.
|