(3.239.159.107) 您好!臺灣時間:2021/03/08 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳家蓉
研究生(外文):Chia-JungChen
論文名稱:以氟化高分子塗佈製備雙疏及化學穩定性與自癒功能的聚酯紡織品
論文名稱(外文):Fabrication of Amphiphobic, Chemically Stable, Self-Healing Polyester Fabrics by Using Fluorinated Polymer Coatings
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:雙疏紡織品含氟高分子塗佈化學穩定自癒
外文關鍵詞:amphiphobic fabricsfluorinated polymer coatingchemical resistanceself-healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究致力於雙疏聚酯纖維紡織品的製備,藉由鹼前處理並以含氟高分子塗佈創造出具有超疏水、疏油的特性及自癒功能(self-healing)等抗物理、化學特性的織物。研究中採用濕式蝕刻的前處理,利用氫氧化鈉對聚酯纖維蝕刻,創造出奈米粗糙度後再利用浸塗法將低表面能量材料的含氟高分子塗佈於織物表面上。在此選用含氟共聚物(Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)為主材料,利用兩步驟改質將3-氨基丙基三甲氧基矽烷(APTMS)及1H, 1H, 2H, 2H-全氟癸基三乙氧基矽烷(FAS-17)對PVDF-HFP疏水改質,使織物達到雙疏的性質。
實驗結果顯示,以PVDF-HFP及FAS-17作塗佈會使織物疏油性不足,若以兩步驟改質則能有效改善疏油性,而以鹼前處理再塗佈含氟溶夜可使表面粗糙度上升,提高接觸角以促使整體的疏液性些許提升,由此得到超疏水外,對乙二醇(47.7 mN/m)的接觸角為144.3°,對表面張力大於27.1mN/m的液體之接觸角則大於133°,並可疏至正辛烷(21.4mN/m)。由於FAS-17的存在使織物具備自癒功能;因PVDF-HFP的耐化學穩定性極佳,使紡織品可抗強酸鹼。
In addition to the commonly achievable superhydrophobicity, oleophobicity and other functionalities such as stain/chemical resistances and self-healing ability are desirable for the modern fabrics. Amphiphobic, chemically stable, and self-healing polyester fabrics were fabricated by using polymer coatings in this work. Hydrophobically-modified (HM) poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) was prepared through a two-step reactions in acetone using 3-aminopropyltrimethoxysilane (H2N-(CH2)3-Si-(OCH3)3) and 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (F3C-(CF2)7-(CH2)2-Si-(OC2H5)3) in the first and second reaction steps, respectively. This coating solution was then applied onto the twill weave polyester fabric, which was pretreated with alkaline hydrolysis, using a dip-coating method. The as-fabricated surfaces exhibited extreme liquid repellency as signified by high static contact angles (≧110.9∘) against six pure liquids (water, ethylene glycol, hexadecane, pentadecane, nonane, octane) with surface tension values ranging from 72.8 to 21.4 mN/m. Furthermore, this coating showed chemical stability to strong acid (96% sulfuric acid) and strong base (38% NaOH). The coating also exhibited self-healing property as revealed by the static contact angle change with the plasma-and-heat treatment cycles. This simple and effective polymer coating may find its application in protective clothing among others.
摘要 I
Extended Abstract II
致謝 XIV
目錄 XV
表目錄 XIX
圖目錄 XXI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與研究目的 2
第二章 文獻回顧 3
2.1 蓮花效應(Lotus effect) 3
2.2 超疏水表面之理論 7
2.2.1 楊氏(Young)方程式 10
2.2.2 溫佐(Wenzel)方程式 11
2.2.3 卡西-巴斯特(Cassie and Baxter)方程式 12
2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 13
2.3 液固黏著性質 15
2.4 超雙疏表面的理論基礎 19
2.5 超雙疏應用於紡織品 24
2.6 超疏液紡織品的製備 26
2.6.1 超疏水紡織品的製備 26
2.6.2 超雙疏紡織品的製備 30
2.7 疏水改質 35
第三章 實驗內容 41
3.1 實驗藥品 41
3.2 儀器設備與裝置 43
3.2.1 Milli-Q超純水系統 43
3.2.2加熱攪拌器 (Hot plate stirrer) 44
3.2.3 箱型高溫爐 (Muffle furnace) 44
3.2.4 掃描式電子顯微鏡 (Scanning electron microscope) 45
3.2.5 接觸角分析儀 (Contact angle measure analyzer) 48
3.2.6 傅立葉轉換紅外光光譜儀 (Fourier transform infrared spectroscopy, FT-IR) 49
3.2.7 紫外燈 (UV lamp) 52
3.2.8 氧電漿表面處理系統 (Oxygen plasma) 53
3.2.9 厚薄計 54
3.3 實驗方法 55
3.3.1 玻璃基板的前置清洗流程 55
3.3.2 聚酯纖維紡織品基材的前置處理 55
3.3.3 氟化高分子溶液的配製 56
3.3.4 氟化高分子的薄膜製備 57
3.3.5 以浸塗法(dip-coating)製備雙疏的聚酯纖維紡織品 58
3.3.6 雙疏紡織品之抗紫外光測試 59
3.3.7 雙疏紡織品之電漿測試 59
第四章 結果與討論 60
4.1 基材與高分子塗層材料之特性 61
4.1.1 塗佈於平滑/粗糙基材之潤濕性質 61
4.1.2 不同高分子塗層之固體表面能量 64
4.2 無前處理之雙疏紡織品表面 67
4.2.1 PVDF-HFP/FAS-17之潤濕性質 67
4.2.2 PVDF-HFP/APTMS/FAS-13, FAS-17之疏液性 69
4.2.3 調整FAS比例對疏液性之影響 72
4.3 前處理之雙疏紡織品表面 74
4.3.1 鹼前處理對PET紡織品之影響 74
4.3.2 蝕刻時間對雙疏表面之疏液性 79
4.3.3 蝕刻時間對雙疏表面之表面形態 86
4.3.4 雙疏表面之元素分析(EDS) 89
4.4 雙疏紡織品之耐久性測試與自癒功能 91
4.4.1 紫外光照射(UV irradiation)對表面之潤濕性影響 91
4.4.2 電漿處理(plasma treatment)對表面之潤濕性影響 94
4.4.3 耐物理、化學特性及自潔功能 98
第五章 結論與建議 102
5.1 結論 102
5.2 建議 104
第六章 參考文獻 105
1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 1997, 79 (6), 667-677.
3. Zimmermann, J.; Seeger, S.; Reifler, F. A., Water shedding angle: a new technique to evaluate the water repellent properties of superhydrophobic surfaces. Textile Research Journal 2009, 79 (17), 1565-1570.
4. Chu, Z.; Seeger, S., Superamphiphobic surfaces. Chemical Society Reviews 2014, 43 (8), 2784-2798.
5. Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y., A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A 2017, 5 (1), 31-55.
6. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
7. Cassie, A.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40, 546-551.
8. Feng, X.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials 2006, 18 (23), 3063-3078.
9. Bormashenko, E.; Grynyov, R.; Chaniel, G.; Taitelbaum, H.; Bormashenko, Y., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science 2013, 270, 98-103.
10. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter 2012, 8 (7), 2070-2086.
11. Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206 (1), 41-46.
12. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing superoleophobic surfaces. Science 2007, 318 (5856), 1618-1622.
13. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal effect: a superhydrophobic state with high adhesive force. Langmuir 2008, 24 (8), 4114-4119.
14. Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J., Adhesive force of a single gecko foot-hair. Nature 2000, 405 (6787), 681-685.
15. Lee, H.; Lee, B. P.; Messersmith, P. B., A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448 (7151), 338-341.
16. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid− solid adhesion. Accounts of Chemical Research 2009, 43 (3), 368-377.
17. Khoo, H. S.; Tseng, F.-G., Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures. Nanotechnology 2008, 19 (34), 345603.
18. Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 2008, 24 (8), 3867-3873.
19. Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching water droplet adhesion using responsive polymer brushes. Langmuir 2010, 26 (14), 12377-12382.
20. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced Materials 2005, 17 (16), 1977-1981.
21. Das, A.; Schutzius, T. M.; Bayer, I. S.; Megaridis, C. M., Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon 2012, 50 (3), 1346-1354.
22. Park, B. G.; Lee, W.; Kim, J. S.; Lee, K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 370 (1), 15-19.
23. Cao, L.; Gao, D., Transparent superhydrophobic and highly oleophobic coatings. Faraday Discussions 2010, 146, 57-65.
24. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing superhydrophobic porous nanostructures with tunable water adhesion. Advanced Materials 2009, 21 (37), 3799-3803.
25. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., “Lock‐and‐key geometry effect of patterned surfaces: wettability and switching of adhesive force. Small 2009, 5 (1), 90-94.
26. Zhao, X. D.; Fan, H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir 2011, 27 (7), 3224-3228.
27. Bohn, H. F.; Federle, W., Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (39), 14138-14143.
28. Zhao, W.; Wang, L.; Xue, Q., Fabrication of low and high adhesion hydrophobic Au surfaces with micro/nano-biomimetic structures. The Journal of Physical Chemistry C 2010, 114 (26), 11509-11514.
29. Xi, J.; Jiang, L., Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research 2008, 47 (17), 6354-6357.
30. Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C., Smart skin patterns protect springtails. PloS One 2011, 6 (9), e25105 (6).
31. Cao, L.; Hu, H.-H.; Gao, D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007, 23 (8), 4310-4314.
32. Cao, L.; Price, T. P.; Weiss, M.; Gao, D., Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 2008, 24 (5), 1640-1643.
33. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E., Robust omniphobic surfaces. Proceedings of the National Academy of Sciences 2008, 105 (47), 18200-18205.
34. Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F., Design parameters for superhydrophobicity and superoleophobicity. MRS Bulletin 2008, 33 (08), 752-758.
35. Zhou, H.; Zhao, Y.; Wang, H.; Lin, T., Recent development in durable super‐liquid‐repellent fabrics. Advanced Materials Interfaces 2016, 3 (23), 1600402 (20).
36. Kota, A. K.; Kwon, G.; Tuteja, A., The design and applications of superomniphobic surfaces. NPG Asia Materials 2014, 6 (7), e109 (16).
37. Joly, L.; Biben, T., Wetting and friction on superoleophobic surfaces. Soft Matter 2009, 5 (13), 2549-2557.
38. Jiang, T.; Guo, Z.; Liu, W., Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A 2015, 3 (5), 1811-1827.
39. Wang, L.; Xi, G.; Wan, S.; Zhao, C.; Liu, X., Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 2014, 21 (4), 2983-2994.
40. Zeng, C.; Wang, H.; Zhou, H.; Lin, T., Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances 2015, 5 (75), 61044-61050.
41. Li, G.; Wang, H.; Zheng, H.; Bai, R., A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes− azide polymer composites. Langmuir 2010, 26 (10), 7529-7534.
42. Zhao, Y.; Xu, Z.; Wang, X.; Lin, T., Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 2012, 28 (15), 6328-6335.
43. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Wang, X.; Lin, T., Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Advanced Materials 2012, 24 (18), 2409-2412.
44. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, self‐healing superamphiphobic fabrics prepared by two‐step coating of fluoro‐containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Advanced Functional Materials 2013, 23 (13), 1664-1670.
45. Zhou, H.; Wang, H.; Niu, H.; Fang, J.; Zhao, Y.; Lin, T., Superstrong, chemically stable, superamphiphobic fabrics from particle‐free polymer coatings. Advanced Materials Interfaces 2015, 2 (6), 1400559 (8).
46. Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T., Durable, self‐healing superhydrophobic and superoleophobic surfaces from fluorinated‐decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angewandte Chemie International Edition 2011, 50 (48), 11433-11436.
47. Wang, H.; Zhou, H.; Gestos, A.; Fang, J.; Lin, T., Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Applied Materials & Interfaces 2013, 5 (20), 10221-10226.
48. Wang, H.; Zhou, H.; Gestos, A.; Fang, J.; Niu, H.; Ding, J.; Lin, T., Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly (3, 4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 2013, 9 (1), 277-282.
49. Xue, C.-H.; Li, Y.-R.; Zhang, P.; Ma, J.-Z.; Jia, S.-T., Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Applied Materials & Interfaces 2014, 6 (13), 10153-10161.
50. Han, M. S.; Park, Y.; Park, C. H., Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers. Fibers and Polymers 2016, 17 (2), 241-247.
51. 楊毓民, 張鑑祥., 分子層級的薄膜表面形態控制-逐層組裝技術. 化工技術 2004, 12.
52. Wang, H.; Zhou, H.; Niu, H.; Zhang, J.; Du, Y.; Lin, T., Dual‐layer superamphiphobic/superhydrophobic‐oleophilic nanofibrous membranes with unidirectional oil‐transport ability and strengthened oil–water separation performance. Advanced Materials Interfaces 2015, 2 (4), 1400506 (7).
53. Mizuno, K., Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method. U.S. Patent, US 7374812, 2008.
54. 陳志強. 以非溶劑誘導相分離的改善製程製備高透明全疏滑溜表面. 國立成功大學碩士論文, 2016.
55. Wu, S., Calculation of interfacial tension in polymer systems, Journal of Polymer Science: Polymer Symposia 1971, 34 (1), 19-30.
56. Kwok, D. Y.; Neumann, A. W., Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science 1999, 81 (3), 167-249.
57. Zhao, Q.; Liu, Y.; Abel, E., Effect of temperature on the surface free energy of amorphous carbon films. Journal of Colloid and Interface Science 2004, 280 (1), 174-183.
58. Zhou, H., Durable non-wetting fabrics: their preparation and wicking function. Deakin University, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔