|
1. Farraro, K. F.; Kim, K. E.; Woo, S. L. Y.; Flowers, J. R.; McCullough, M. B. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 2014, 47, 1979–1986. 2. Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science (80-. ). 2002, 295, 1014–1017. 3. Mahyudin, F.; Widhiyanto, L.; Hermawan, H. Biomaterials in orthopaedics. Adv. Struct. Mater. 2016, 58, 161–181. 4. Søballe, K.; Hansen, E. S.; Brockstedt-Rasmussen, H.; Bünger, C. Hydroxyapatite Coating Converts Fibrous Tissue to bone Around Loaded Implants. J Bone Jt. Surg 1993, 75, 270–278. 5. Gittens, R. A.; Olivares-navarrete, R.; Schwartz, Z.; Boyan, B. D. Implant osseointegration and the role of microroughness and nanostructures : Lessons for spine implants. Acta Biomater. 2014, 10, 3363–3371. 6. Klein, C.; Driessen, A. A.; Degroot, K.; Vandenhooff, A. Biodegradation Behavior of Various Calcium-Phosphate Materials in Bone Tissue. J. Biomed. Mater. Res. 1983, 17, 769–784. 7. Carter, C. B.; Norton, M. G. Ceramics in Biology and Medicine. Ceram. Mater. 2007, 635–651. 8. Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013, 29, 503–513. 9. Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. 10. Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. 11. Saris, N.-E. L.; Mervaala, E.; Karppanen, H.; Khawaja, J. A.; Lewenstam, A. Magnesium. Clin. Chim. Acta 2000, 294, 1–26. 12. Janning, C.; Willbold, E.; Vogt, C.; Nellesen, J.; Meyer-Lindenberg, A.; Windhagen, H.; Thorey, F.; Witte, F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010, 6, 1861–1868. 13. Bushinsky, D. A. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am. J. Physiol. 1996, 271, F216-22. 14. He, L. Y.; Zhang, X. M.; Liu, B.; Tian, Y.; Ma, W. H. Effect of magnesium ion on human osteoblast activity. Brazilian J. Med. Biol. Res. 2016, 49, 1–6. 15. Gu, X. N.; Xie, X. H.; Li, N.; Zheng, Y. F.; Qin, L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012, 8, 2360–2374. 16. Zhang, E.; Xu, L.; Yu, G.; Pan, F.; Yang, K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J. Biomed. Mater. Res. 2008, 90A: 882–893. 17. Yoshizawa, S.; Chaya, A.; Verdelis, K.; Bilodeau, E. A.; Sfeir, C. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells. Acta Biomater. 2015, 28, 234–239. 18. Choi, H. Y.; Kim, W. J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy. J. Mech. Behav. Biomed. Mater. 2015, 51, 291–301. 19. Mostaed, E.; Hashempour, M.; Fabrizi, A.; Dellasega, D.; Bestetti, M.; Bonollo, F.; Vedani, M. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater. 2014, 37, 307–322. 20. Lin, D. J.; Hung, F. Y.; Lui, T. S.; Yeh, M. L. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Mater. Sci. Eng. C 2015, 51, 300–308. 21. Bornapour, M.; Celikin, M.; Cerruti, M.; Pekguleryuz, M.Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater. Sci. Eng. C 2014, 35, 267–282. 22. Huan, Z. G.; Leeflang, M. A.; Zhou, J.; Fratila-Apachitei, L. E.; Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J. Mater. Sci. Mater. Med. 2010, 21, 2623–2635. 23. Li, Y.; Wen, C.; Mushahary, D.; Sravanthi, R.; Harishankar, N.; Pande, G.; Hodgson, P. Mg-Zr-Sr alloys as biodegradable implant materials. Acta Biomater. 2012, 8, 3177–3188. 24. Tapiero, H.; Tew, K. D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. 25. Hung, D. L. F.; Lui, M. Y. T. Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro. J. Mater. Sci. Mater. Med. 2015, 26, 1–10. 26. Xin, Y.; Hu, T.; Chu, P. K. Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys. J. Electrochem. Soc. 2010, 157, C238. 27. Liu, X.; Chu, P. K.; Ding, C. Surface nano-functionalization of biomaterials. Mater. Sci. Eng. R Reports 2010, 70, 275–302. 28. Gu, X. N.; Zheng, W.; Cheng, Y.; Zheng, Y. F. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009, 5, 2790–2799. 29. Song, Y.; Zhang, S.; Li, J.; Zhao, C.; Zhang, X. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomater. 2010, 6, 1736–1742. 30. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coatings Technol. 2007, 202, 590–598. 31. Chen, X.; Li, G.; Lian, J.; Jiang, Q. An organic chromium-free conversion coating on AZ91D magnesium alloy. Appl. Surf. Sci. 2008, 255, 2322–2328. 32. Wong, H. M.; Yeung, K. W. K.; Lam, K. O.; Tam, V.; Chu, P. K.; Luk, K. D. K.; Cheung, K. M. C. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010, 31, 2084–2096. 33. Guo, H. F.; An, M. Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Appl. Surf. Sci. 2005, 246, 229–238. 34. Dou, J.; Yu, H.; Chen, C.; Pan, Y.; Gao, D.; Zhang, X. Formation of calcium phosphate coating on Mg-Zn-Ca alloy by micro-arc oxidation technique. Mater. Lett. 2016, 164, 575–578. 35. Chou, W.; Yang, M. Preparation of black ceramic coating on AZ91D magnesium alloy by micro-arc oxidation. 2012, 36, 261-269. 36. Gu, X. N.; Li, N.; Zhou, W. R.; Zheng, Y. F.; Zhao, X.; Cai, Q. Z.; Ruan, L. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg – Ca alloy. Acta Biomater. 2011, 7, 1880–1889. 37. Wang, L.; Chen, L.; Yan, Z.; Fu, W. Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes. Surf. Coatings Technol. 2010, 205, 1651–1658. 38. Yang, X.; Li, M.; Lin, X.; Tan, L.; Lan, G.; Li, L.; Yin, Q.; Xia, H.; Zhang, Y.; Yang, K. Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4. Surf. Coatings Technol. 2013, 233, 65–73. 39. Ni, S.; Chou, L.; Chang, J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. 2007, 33, 83–88. 40. Xie, Y.; Liu, X.; Ding, C.; Chu, P. K. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate / zirconia composite coating. 2005, 25, 509–515. 41. Pan, Y. K.; Chen, C. Z.; Wang, D. G.; Zhao, T. G. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg – Zn – Zr magnesium alloy. Colloids Surfaces B Biointerfaces 2013, 109, 1–9. 42. Cai, Q.; Wang, L.; Wei, B.; Liu, Q. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. 2006, 200, 3727–3733. 43. Liang, J.; Hu, L.; Hao, J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl. Surf. Sci. 2007, 253, 4490–4496. 44. Yue, Y.; Hua, W. U. Effect of current density on corrosion resistance of micro-arc oxide coatings on magnesium alloy. Trans. Nonferrous Met. Soc. China 2010, 20, s688–s692. 45. Gu, Y.; Bandopadhyay, S.; Chen, C.; Guo, Y.; Ning, C. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. J. Alloys Compd. 2012, 543, 109–117. 46. Li, L. H.; Sankara Narayanan, T. S. N.; Kim, Y. K.; Kong, Y. M.; Park, I. S.; Bae, T. S.; Lee, M. H. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films 2014, 562, 561–567. 47. Cui, X. J.; Liu, C. H.; Yang, R. S.; Li, M. T.; Lin, X. Z. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surf. Coatings Technol. 2015, 269, 228–237. 48. Bishop, J. A.; Palanca, A. A.; Bellino, M. J.; Lowenberg, D. W. Assessment of compromised fracture healing. J. Am. Acad. Orthop. Surg. 2012, 20, 273–282. 49. Moriarty, T. F.; Schlegel, U.; Perren, S.; Richards, R. G. Infection in fracture fixation: Can we influence infection rates through implant design? J. Mater. Sci. Mater. Med. 2010, 21, 1031–1035. 50. Liu, Y.; DeGroot, K.; Hunziker, E. B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 2005, 36, 745–757. 51. Crouzier, T.; Ren, K.; Nicolas, C.; Roy, C.; Picart, C. Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: Controlled differentiation of myoblasts to osteoblasts. Small 2009, 5, 598–608. 52. Kunjukunju, S.; Roy, A.; Ramanathan, M.; Lee, B.; Candiello, J. E.; Kumta, P. N. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 2013, 9, 8690–8703. 53. Yu, X.; Wei, M.; Walsh, J. Covalent Immobilization of Collagen on Titanium through Polydopamine Coating to Improve Cellular Performances of MC3T3-E1 Cells. RSC Adv. 2014, 4, 7185–7192. 54. Chien, C.-Y.; Tsai, W.-B. Poly(dopamine)-assisted immobilization of RGD peptides, hydroxyapatite and BMP-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl. Mater. Interfaces 2013, 2–10. 55. Pan, C. J.; Hou, Y.; Wang, Y. N.; Gao, F.; Liu, T.; Hou, Y. H.; Zhu, Y. F.; Ye, W.; Wang, L. R. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy. Mater. Sci. Eng. C 2016, 67, 132–143. 56. Pan, C.; Hu, Y.; Hou, Y.; Liu, T.; Lin, Y.; Ye, W.; Hou, Y.; Gong, T. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly(ethylene glycol), fibronectin and heparin. Mater. Sci. Eng. C 2017, 70, Part 1, 438–449. 57. Petrie, T. A.; Raynor, J. E.; Dumbauld, D. W.; Lee, T. T.; Jagtap, S.; Templeman, K. L.; Collard, D. M.; Garcia, A. J. Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Sci. Transl. Med. 2010, 2, 45ra60-45ra60. 58. Chen, Y.; Yan, G.; Wang, X.; Qian, H.; Yi, J.; Huang, L.; Liu, P. Bio-functionalization of micro-arc oxidized magnesium alloys via thiol-ene photochemistry. Surf. Coatings Technol. 2015, 269, 191–199. 59. Hernandez-Montelongo, J.; Lucchesi, E. G.; Nascimento, V. F.; França, C. G.; Gonzalez, I.; Macedo, W. A. A.; Machado, D.; Lancellotti, M.; Moraes, A. M.; Beppu, M. M.; Cotta, M. A. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. Mater. Sci. Eng. C 2017, 71, 718–724. 60. Bahulekar, R.; Ayyangar, N. R.; Ponrathnam, S. Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb. Technol. 1991, 13, 858–868. 61. Dong, P.; Hao, W.; Wang, X.; Wang, T. Fabrication and biocompatibility of polyethyleneimine/heparin self-assembly coating on NiTi alloy. Thin Solid Films 2008, 516, 5168–5171. 62. Ren, S. L.; Yang, S. R.; Zhao, Y. P. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface. Appl. Surf. Sci. 2004, 227, 293–299. 63. Liu, P.; Pan, X.; Yang, W.; Cai, K.; Chen, Y. Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Mater. Lett. 2012, 75, 118–121. 64. Jiang, H. L.; Kwon, J. T.; Kim, E. M.; Kim, Y. K.; Arote, R.; Jere, D.; Jeong, H. J.; Jang, M. K.; Nah, J. W.; Xu, C. X.; Park, I. K.; Cho, M. H.; Cho, C. S. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J. Control. Release 2008, 131, 150–157. 65. Ren, S.; Yang, S.; Zhao, Y.; Yu, T.; Xiao, X. Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci. 2003, 546, 64–74. 66. Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chemie - Int. Ed. 2013, 52, 10766–10770. 67. Noda, H.; Miyamoto, Y. Mechanism for the antibacterial activity of a mixture of 3 , 4 , 5-trihydroxy benzoic acid and magnesium oxide. 2015, 4, 5–8. 68. Gutiérrez-Larraínzar, M., Rúa, J., de Arriaga, D., del Valle, P., & García-Armesto, M. R. In vitro assessment of synthetic phenolic antioxidants for inhibition of foodborne Staphylococcus aureus, Bacillus cereus and Pseudomonas fluorescens. Food Control 2013, 30, 393–399. 69. Lišková, J.; Douglas, T. E. L.; Beranová, J.; Skwarczyńska, A.; Božič, M.; Samal, S. K.; Modrzejewska, Z.; Gorgieva, S.; Kokol, V.; Bačáková, L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr. Polym. 2015, 129, 135–142. 70. Yang, Z.; Wu, J.; Wang, X.; Wang, J.; Huang, N. Inspired chemistry for a simple but highly effective immobilization of vascular endothelial growth factor on gallic acid-functionalized plasma polymerized film. Plasma Process. Polym. 2012, 9, 718–725. 71. Yang, Z.; Xiong, K.; Qi, P.; Yang, Y.; Tu, Q.; Wang, J.; Huang, N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS Appl. Mater. Interfaces 2014, 6, 2647–2656. 72. Chen, S.; Zhang, J.; Chen, Y.; Zhao, S.; Chen, M.; Li, X.; Maitz, M. F.; Wang, J.; Huang, N. Application of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion and Surface Biofunctionalization. ACS Appl. Mater. Interfaces 2015, 7, 24510–24522. 73. Wallin, R. F.; Arscott, E. F. A practical guide to ISO 10993-5: Cytotoxicity. Med. Device Diagnostic Ind. Mag. 1998, 2–4. 74. Theo, U.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. 2002, 19, 3–8. 75. Liang, J.; Guo, B.; Tian, J.; Liu, H.; Zhou, J.; Xu, T. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. 2005, 252, 345–351. 76. Gulbrandsen, E., Taftø, J., & Olsen, A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations. Corros. Sci. 1993, 34, 1423–1440. 77. Hwang, D. Y.; Kim, Y. M.; Shin, D. H. Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride. Mater. Trans. 2009, 50, 671–678. 78. Ha, W.; Kim, Y. J. Effects of cover gases on melt protection of Mg alloys. J. Alloys Compd. 2006, 422, 208–213. 79. Duan, H.; Du, K.; Yan, C.; Wang, F. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. 2006, 51, 2898–2908. 80. Lin, X.; Tan, L.; Wang, Q.; Zhang, G.; Zhang, B.; Yang, K. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater. Sci. Eng. C 2013, 33, 3881–3888. 81. Kohn, D. H.; Sarmadi, M.; Helman, J. I.; Krebsbach, P. H. Effects of pH on human bone marrow stromal cells in vitro: Implications for tissue engineering of bone. J. Biomed. Mater. Res. 2002, 60, 292–299. 82. Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–31. 83. Li, G.; Cao, H.; Zhang, W.; Ding, X.; Yang, G.; Qiao, Y.; Liu, X.; Jiang, X. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Appl. Mater. Interfaces 2016, 8, 3840–3852. 84. Kunzler, T. P.; Drobek, T.; Schuler, M.; Ã, N. D. S. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007, 28, 2175–2182. 85. Simpson, J.; Lankford, J.; Al, M. E. T. Effect of titanium surface roughness on moliferation, differentiation, and rotein synthesis of Ahurnan osteoblast-like cells. 1995, 29. 86. Arima, Y.; Iwata, H.Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007, 28, 3074–3082. 87. Ueno, T.; Ikeda, T.; Tsukimura, N.; Ishijima, M. Biomaterials Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials 2016, 108, 177–186. 88. Chen, W.; Shen, X.; Hu, Y.; Xu, K.; Ran, Q.; Yu, Y.; Dai, L.; Yuan, Z.; Huang, L.; Shen, T.; Cai, K. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials 2017, 114, 82–96. 89. Marino, T.; Galano, A.; Russo, N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J. Phys. Chem. B 2014, 118, 10380-10389. 90. Symons, M. C. R. Radicals generated by bone cuttung and fracture. 1996, 20, 831–835. 91. Banfi, G.; Iorio, E. L.; Corsi, M. M.Oxidative stress , free radicals and bone remodeling. 2008, 46, 1550–1555. 92. Yang, Z.; Yang, Y.; Yan, W.; Tu, Q.; Wang, J.; Huang, N. Construction of polyfunctional coatings assisted by gallic acid to facilitate Co-immobilization of diverse biomolecules. ACS Appl. Mater. Interfaces 2013, 5, 10495–10501. 93. Xu, L. Q.; Pranantyo, D.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. ACS Sustain. Chem. Eng. 2016, 4, 4264–4272.
|