(3.215.183.251) 您好!臺灣時間:2021/04/22 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李泓邦
研究生(外文):Hung-PangLee
論文名稱:製備棓酸修飾之微弧氧化塗層於鎂合金表面: 抗腐蝕性與生物相容性評估
論文名稱(外文):Preparation of Gallic Acid Modified Micro Arc Oxidation Coating on Magnesium Alloy: Corrosion and Biocompatibility Assessment
指導教授:葉明龍葉明龍引用關係
指導教授(外文):Ming-Long Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:鎂合金棓酸抗腐蝕生物相容性
外文關鍵詞:magnesium alloysgallic acidanti-corrosionbiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎂合金具有生物可降解特性與良好的生物相容性,並且其機械性質與骨頭相匹配,可作為新的可降解骨科植體,但由於未經處理的鎂合金在人體環境中降解腐蝕過快,並且腐蝕伴隨的副產物,氫氣、高濃度的鹼性離子與鎂離子可能會導致周邊骨組織的發炎反應,因此本研究將透過表面處理減緩腐蝕與提高材料的生物相容性。
實驗首先透過微弧氧化處理在鎂合金基材上形成一多孔鈍化層,其成分主要為氧化鎂與矽氧化鎂,此陶瓷氧化塗層可防止腐蝕液體接觸基材,提升材料的抗腐蝕能力,本研究藉由添加氟化物以及調整最終電壓值,最佳化塗層的腐蝕阻抗。微弧氧化塗層表面散布的孔洞可增加其粗糙度與表面積,並且塗層中最外層的氫氧化鎂可透過氫鍵與聚乙烯亞胺(Polyethyleneimine,PEI)結合,分枝型態的PEI具有一級胺可與羧基交聯形成醯胺鍵,因此棓酸(Gallic acid, GA),一種多功能性的天然酚類分子,即可固定在微弧氧化塗層上,儘管鎂合金表面已有一層氧化保護層,但水溶液下的棓酸依然會破壞塗層的結構腐蝕鎂合金,所以接枝反應必須在非水溶液下進行,確保抗腐蝕性不被破壞。
經由FT-IR、XPS與親水角實驗證實,本研究成功將PEI與GA固定在微弧氧化塗層上,並且藉由表面型態、酸鹼值變化、氫氣釋放與電化學實驗確認此製程不會破壞塗層和降低抗腐蝕能力,在體外細胞實驗,發現經由PEI與GA修飾後的組別具有最好的生物相容性,且能夠促進骨細胞的貼附行為,而GA又可再接上含有胺基的功能性分子,如: 血管內皮生長因子(VEGF),此研究成功發展出第一個將棓酸修飾在生醫鎂合金微弧氧化塗層的方法。
Magnesium alloys are biodegradable materials with good biocompatibility. Its mechanical properties are close to human’s natural bone and thus magnesium alloys are good candidates of biodegradable bone implants. However, the unmodified magnesium alloys may suffer from the rapid corrosion in the physiological environment. Moreover, the byproducts of the corrosion, such as hydrogen, high concentration of metallic and alkaline ions, will cause the inflammatory of the osseous tissue. Thus, this research utilized surface modification to decrease the corrosion rate and improve the biocompatibility.
First, micro arc oxidation (MAO) process created a porous and passivated coating on the magnesium alloy. The coating, mainly composed of MgO and Mg2SiO4, could inhibit the corrosive solution contacting with the substrates to increase the corrosion resistance. In this study, by modulating the components of the electrolytes and the final voltages, the highest corrosion resistance of MAO coating could be obtained. Second, the scattering pores of MAO coating could increase surface roughness and area. In addition, Mg(OH)2 covered the outmost part of the coating which provide great sites for combining Polyethyleneimine (PEI) through hydrogen bond. The amine group of PEI could further react with the carboxyl group of gallic acid (GA), a natural and multifunctional phenolic molecule, by forming amide bond. Although there was a protective layer on the magnesium alloy, under the aqueous condition, GA still would break the structure of the MAO coating. Therefore, the grafting reaction must process in the non-aqueous solution to ensure the sufficient corrosion resistance.
In this study, PEI and GA were successfully immobilized onto the MAO coating confirmed by FT-IR, XPS and contact angle. The corrosion resistance was assessed by the surface morphology, the variation of the pH value, the releasement of the hydrogen and the electrochemical tests indicating that the immobilization wouldn’t decline the quality of the MAO coating. In vitro tests, the cell cytotoxicity and adhesion tests found that PEI and GA modified group had the best biocompatibility and can stimulate osteoblastic-like cells adhesion. Moreover, GA can further combine with some biofuctional molecules, such as vascular endothelial growth factor (VEGF). In conclusion, this study successfully developed a method for immobilizing GA onto MAO coating of biodegradable magnesium alloy for the first time.
中文摘要 I
Abstract II
致謝 IV
Table of contents V
List of tables VIII
List of figures IX
Chapter 1 introduction 1
1.1 Biodegradable Orthopedic Implants 1
1.2 Magnesium Alloys 3
1.3 The comparison of surface treatment for magnesium 5
1.4 Strategies to improve micro arc oxidation coating 6
1. Choice of electrolytes 9
2. Process parameters and conditions 10
3. Sealing and post treatments 10
1.5 The biologic coatings for orthopedic implants 11
1.6 Molecules immobilized on magnesium 13
1.7 Polyethyleneimine 15
1.8 Phenolic molecules 16
1.9 Motivation 18
Chapter 2 Materials and Methods 19
2.1 Experimental equipment and materials 19
2.1.1 Magnesium specimens 19
2.1.2 Experimental Materials 19
2.1.3 Experimental Equipment 20
2.2 Experimental Methods 21
2.2.1 Micro Arc Oxidation coating 21
2.2.2 Polyethyleneimine Coating 21
2.2.3 Immobilization of Gallic Acid 22
2.3 Experimental Setup 23
2.4 Material Characterizations 23
2.4.1 Surface morphology and chemical composition 23
2.4.2 AFM measurements 24
2.4.3 Phase composition measurement 24
2.4.4 Functional group measurement 24
2.4.5 X-ray photoelectron spectroscopy 24
2.4.6 Water contact angle 25
2.4.7 Secondary immobilizing ability 25
2.5 Corrosion resistance analysis 26
2.5.1 Electrochemical test 26
2.5.2 Hydrogen releasement tests 26
2.5.3 pH value enhancement tests 27
2.6 Cell Culture 27
2.7 In vitro tests 28
2.7.1 Cytotoxicity tests 28
2.7.2 Cell adhesion tests 28
2.7.3 Hemolysis tests 29
Chapter 3 Results 30
3.1 The effects of the electrolyte for MAO coating 30
3.2 The effects of the final voltage in MAO process 36
3.3 MAO coating immobilized with PEI and GA: Part 1 Materials analysis 41
3.4 MAO coating immobilized with PEI and GA: Part 2 Materials corrosion resistance analysis 50
3.5 MAO coating immobilized with PEI and GA: Part 3 In vitro tests 52
Chapter 4 Discussion 58
4.1 The optimization of MAO coating 58
4.2 MAO coating immobilized with PEI and GA: Material analysis 61
4.3 MAO coating immobilized with PEI and GA: The evaluation of corrosion behavior 64
4.4 MAO coating immobilized with PEI and GA: The performance of biological response 66
Conclusion 70
References 71
1. Farraro, K. F.; Kim, K. E.; Woo, S. L. Y.; Flowers, J. R.; McCullough, M. B. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 2014, 47, 1979–1986.
2. Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science (80-. ). 2002, 295, 1014–1017.
3. Mahyudin, F.; Widhiyanto, L.; Hermawan, H. Biomaterials in orthopaedics. Adv. Struct. Mater. 2016, 58, 161–181.
4. Søballe, K.; Hansen, E. S.; Brockstedt-Rasmussen, H.; Bünger, C. Hydroxyapatite Coating Converts Fibrous Tissue to bone Around Loaded Implants. J Bone Jt. Surg 1993, 75, 270–278.
5. Gittens, R. A.; Olivares-navarrete, R.; Schwartz, Z.; Boyan, B. D. Implant osseointegration and the role of microroughness and nanostructures : Lessons for spine implants. Acta Biomater. 2014, 10, 3363–3371.
6. Klein, C.; Driessen, A. A.; Degroot, K.; Vandenhooff, A. Biodegradation Behavior of Various Calcium-Phosphate Materials in Bone Tissue. J. Biomed. Mater. Res. 1983, 17, 769–784.
7. Carter, C. B.; Norton, M. G. Ceramics in Biology and Medicine. Ceram. Mater. 2007, 635–651.
8. Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable Materials for Bone Repairs: A Review. J. Mater. Sci. Technol. 2013, 29, 503–513.
9. Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573.
10. Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734.
11. Saris, N.-E. L.; Mervaala, E.; Karppanen, H.; Khawaja, J. A.; Lewenstam, A. Magnesium. Clin. Chim. Acta 2000, 294, 1–26.
12. Janning, C.; Willbold, E.; Vogt, C.; Nellesen, J.; Meyer-Lindenberg, A.; Windhagen, H.; Thorey, F.; Witte, F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010, 6, 1861–1868.
13. Bushinsky, D. A. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am. J. Physiol. 1996, 271, F216-22.
14. He, L. Y.; Zhang, X. M.; Liu, B.; Tian, Y.; Ma, W. H. Effect of magnesium ion on human osteoblast activity. Brazilian J. Med. Biol. Res. 2016, 49, 1–6.
15. Gu, X. N.; Xie, X. H.; Li, N.; Zheng, Y. F.; Qin, L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012, 8, 2360–2374.
16. Zhang, E.; Xu, L.; Yu, G.; Pan, F.; Yang, K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J. Biomed. Mater. Res. 2008, 90A: 882–893.
17. Yoshizawa, S.; Chaya, A.; Verdelis, K.; Bilodeau, E. A.; Sfeir, C. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells. Acta Biomater. 2015, 28, 234–239.
18. Choi, H. Y.; Kim, W. J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy. J. Mech. Behav. Biomed. Mater. 2015, 51, 291–301.
19. Mostaed, E.; Hashempour, M.; Fabrizi, A.; Dellasega, D.; Bestetti, M.; Bonollo, F.; Vedani, M. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater. 2014, 37, 307–322.
20. Lin, D. J.; Hung, F. Y.; Lui, T. S.; Yeh, M. L. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Mater. Sci. Eng. C 2015, 51, 300–308.
21. Bornapour, M.; Celikin, M.; Cerruti, M.; Pekguleryuz, M.Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater. Sci. Eng. C 2014, 35, 267–282.
22. Huan, Z. G.; Leeflang, M. A.; Zhou, J.; Fratila-Apachitei, L. E.; Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J. Mater. Sci. Mater. Med. 2010, 21, 2623–2635.
23. Li, Y.; Wen, C.; Mushahary, D.; Sravanthi, R.; Harishankar, N.; Pande, G.; Hodgson, P. Mg-Zr-Sr alloys as biodegradable implant materials. Acta Biomater. 2012, 8, 3177–3188.
24. Tapiero, H.; Tew, K. D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411.
25. Hung, D. L. F.; Lui, M. Y. T. Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro. J. Mater. Sci. Mater. Med. 2015, 26, 1–10.
26. Xin, Y.; Hu, T.; Chu, P. K. Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys. J. Electrochem. Soc. 2010, 157, C238.
27. Liu, X.; Chu, P. K.; Ding, C. Surface nano-functionalization of biomaterials. Mater. Sci. Eng. R Reports 2010, 70, 275–302.
28. Gu, X. N.; Zheng, W.; Cheng, Y.; Zheng, Y. F. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009, 5, 2790–2799.
29. Song, Y.; Zhang, S.; Li, J.; Zhao, C.; Zhang, X. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomater. 2010, 6, 1736–1742.
30. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coatings Technol. 2007, 202, 590–598.
31. Chen, X.; Li, G.; Lian, J.; Jiang, Q. An organic chromium-free conversion coating on AZ91D magnesium alloy. Appl. Surf. Sci. 2008, 255, 2322–2328.
32. Wong, H. M.; Yeung, K. W. K.; Lam, K. O.; Tam, V.; Chu, P. K.; Luk, K. D. K.; Cheung, K. M. C. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010, 31, 2084–2096.
33. Guo, H. F.; An, M. Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Appl. Surf. Sci. 2005, 246, 229–238.
34. Dou, J.; Yu, H.; Chen, C.; Pan, Y.; Gao, D.; Zhang, X. Formation of calcium phosphate coating on Mg-Zn-Ca alloy by micro-arc oxidation technique. Mater. Lett. 2016, 164, 575–578.
35. Chou, W.; Yang, M. Preparation of black ceramic coating on AZ91D magnesium alloy by micro-arc oxidation. 2012, 36, 261-269.
36. Gu, X. N.; Li, N.; Zhou, W. R.; Zheng, Y. F.; Zhao, X.; Cai, Q. Z.; Ruan, L. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg – Ca alloy. Acta Biomater. 2011, 7, 1880–1889.
37. Wang, L.; Chen, L.; Yan, Z.; Fu, W. Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes. Surf. Coatings Technol. 2010, 205, 1651–1658.
38. Yang, X.; Li, M.; Lin, X.; Tan, L.; Lan, G.; Li, L.; Yin, Q.; Xia, H.; Zhang, Y.; Yang, K. Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4. Surf. Coatings Technol. 2013, 233, 65–73.
39. Ni, S.; Chou, L.; Chang, J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. 2007, 33, 83–88.
40. Xie, Y.; Liu, X.; Ding, C.; Chu, P. K. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate / zirconia composite coating. 2005, 25, 509–515.
41. Pan, Y. K.; Chen, C. Z.; Wang, D. G.; Zhao, T. G. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg – Zn – Zr magnesium alloy. Colloids Surfaces B Biointerfaces 2013, 109, 1–9.
42. Cai, Q.; Wang, L.; Wei, B.; Liu, Q. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. 2006, 200, 3727–3733.
43. Liang, J.; Hu, L.; Hao, J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl. Surf. Sci. 2007, 253, 4490–4496.
44. Yue, Y.; Hua, W. U. Effect of current density on corrosion resistance of micro-arc oxide coatings on magnesium alloy. Trans. Nonferrous Met. Soc. China 2010, 20, s688–s692.
45. Gu, Y.; Bandopadhyay, S.; Chen, C.; Guo, Y.; Ning, C. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. J. Alloys Compd. 2012, 543, 109–117.
46. Li, L. H.; Sankara Narayanan, T. S. N.; Kim, Y. K.; Kong, Y. M.; Park, I. S.; Bae, T. S.; Lee, M. H. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films 2014, 562, 561–567.
47. Cui, X. J.; Liu, C. H.; Yang, R. S.; Li, M. T.; Lin, X. Z. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surf. Coatings Technol. 2015, 269, 228–237.
48. Bishop, J. A.; Palanca, A. A.; Bellino, M. J.; Lowenberg, D. W. Assessment of compromised fracture healing. J. Am. Acad. Orthop. Surg. 2012, 20, 273–282.
49. Moriarty, T. F.; Schlegel, U.; Perren, S.; Richards, R. G. Infection in fracture fixation: Can we influence infection rates through implant design? J. Mater. Sci. Mater. Med. 2010, 21, 1031–1035.
50. Liu, Y.; DeGroot, K.; Hunziker, E. B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 2005, 36, 745–757.
51. Crouzier, T.; Ren, K.; Nicolas, C.; Roy, C.; Picart, C. Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: Controlled differentiation of myoblasts to osteoblasts. Small 2009, 5, 598–608.
52. Kunjukunju, S.; Roy, A.; Ramanathan, M.; Lee, B.; Candiello, J. E.; Kumta, P. N. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 2013, 9, 8690–8703.
53. Yu, X.; Wei, M.; Walsh, J. Covalent Immobilization of Collagen on Titanium through Polydopamine Coating to Improve Cellular Performances of MC3T3-E1 Cells. RSC Adv. 2014, 4, 7185–7192.
54. Chien, C.-Y.; Tsai, W.-B. Poly(dopamine)-assisted immobilization of RGD peptides, hydroxyapatite and BMP-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl. Mater. Interfaces 2013, 2–10.
55. Pan, C. J.; Hou, Y.; Wang, Y. N.; Gao, F.; Liu, T.; Hou, Y. H.; Zhu, Y. F.; Ye, W.; Wang, L. R. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy. Mater. Sci. Eng. C 2016, 67, 132–143.
56. Pan, C.; Hu, Y.; Hou, Y.; Liu, T.; Lin, Y.; Ye, W.; Hou, Y.; Gong, T. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly(ethylene glycol), fibronectin and heparin. Mater. Sci. Eng. C 2017, 70, Part 1, 438–449.
57. Petrie, T. A.; Raynor, J. E.; Dumbauld, D. W.; Lee, T. T.; Jagtap, S.; Templeman, K. L.; Collard, D. M.; Garcia, A. J. Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Sci. Transl. Med. 2010, 2, 45ra60-45ra60.
58. Chen, Y.; Yan, G.; Wang, X.; Qian, H.; Yi, J.; Huang, L.; Liu, P. Bio-functionalization of micro-arc oxidized magnesium alloys via thiol-ene photochemistry. Surf. Coatings Technol. 2015, 269, 191–199.
59. Hernandez-Montelongo, J.; Lucchesi, E. G.; Nascimento, V. F.; França, C. G.; Gonzalez, I.; Macedo, W. A. A.; Machado, D.; Lancellotti, M.; Moraes, A. M.; Beppu, M. M.; Cotta, M. A. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. Mater. Sci. Eng. C 2017, 71, 718–724.
60. Bahulekar, R.; Ayyangar, N. R.; Ponrathnam, S. Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb. Technol. 1991, 13, 858–868.
61. Dong, P.; Hao, W.; Wang, X.; Wang, T. Fabrication and biocompatibility of polyethyleneimine/heparin self-assembly coating on NiTi alloy. Thin Solid Films 2008, 516, 5168–5171.
62. Ren, S. L.; Yang, S. R.; Zhao, Y. P. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface. Appl. Surf. Sci. 2004, 227, 293–299.
63. Liu, P.; Pan, X.; Yang, W.; Cai, K.; Chen, Y. Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Mater. Lett. 2012, 75, 118–121.
64. Jiang, H. L.; Kwon, J. T.; Kim, E. M.; Kim, Y. K.; Arote, R.; Jere, D.; Jeong, H. J.; Jang, M. K.; Nah, J. W.; Xu, C. X.; Park, I. K.; Cho, M. H.; Cho, C. S. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J. Control. Release 2008, 131, 150–157.
65. Ren, S.; Yang, S.; Zhao, Y.; Yu, T.; Xiao, X. Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci. 2003, 546, 64–74.
66. Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chemie - Int. Ed. 2013, 52, 10766–10770.
67. Noda, H.; Miyamoto, Y. Mechanism for the antibacterial activity of a mixture of 3 , 4 , 5-trihydroxy benzoic acid and magnesium oxide. 2015, 4, 5–8.
68. Gutiérrez-Larraínzar, M., Rúa, J., de Arriaga, D., del Valle, P., & García-Armesto, M. R. In vitro assessment of synthetic phenolic antioxidants for inhibition of foodborne Staphylococcus aureus, Bacillus cereus and Pseudomonas fluorescens. Food Control 2013, 30, 393–399.
69. Lišková, J.; Douglas, T. E. L.; Beranová, J.; Skwarczyńska, A.; Božič, M.; Samal, S. K.; Modrzejewska, Z.; Gorgieva, S.; Kokol, V.; Bačáková, L. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization. Carbohydr. Polym. 2015, 129, 135–142.
70. Yang, Z.; Wu, J.; Wang, X.; Wang, J.; Huang, N. Inspired chemistry for a simple but highly effective immobilization of vascular endothelial growth factor on gallic acid-functionalized plasma polymerized film. Plasma Process. Polym. 2012, 9, 718–725.
71. Yang, Z.; Xiong, K.; Qi, P.; Yang, Y.; Tu, Q.; Wang, J.; Huang, N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS Appl. Mater. Interfaces 2014, 6, 2647–2656.
72. Chen, S.; Zhang, J.; Chen, Y.; Zhao, S.; Chen, M.; Li, X.; Maitz, M. F.; Wang, J.; Huang, N. Application of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion and Surface Biofunctionalization. ACS Appl. Mater. Interfaces 2015, 7, 24510–24522.
73. Wallin, R. F.; Arscott, E. F. A practical guide to ISO 10993-5: Cytotoxicity. Med. Device Diagnostic Ind. Mag. 1998, 2–4.
74. Theo, U.; Biehl, V.; Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. 2002, 19, 3–8.
75. Liang, J.; Guo, B.; Tian, J.; Liu, H.; Zhou, J.; Xu, T. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. 2005, 252, 345–351.
76. Gulbrandsen, E., Taftø, J., & Olsen, A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations. Corros. Sci. 1993, 34, 1423–1440.
77. Hwang, D. Y.; Kim, Y. M.; Shin, D. H. Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride. Mater. Trans. 2009, 50, 671–678.
78. Ha, W.; Kim, Y. J. Effects of cover gases on melt protection of Mg alloys. J. Alloys Compd. 2006, 422, 208–213.
79. Duan, H.; Du, K.; Yan, C.; Wang, F. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. 2006, 51, 2898–2908.
80. Lin, X.; Tan, L.; Wang, Q.; Zhang, G.; Zhang, B.; Yang, K. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater. Sci. Eng. C 2013, 33, 3881–3888.
81. Kohn, D. H.; Sarmadi, M.; Helman, J. I.; Krebsbach, P. H. Effects of pH on human bone marrow stromal cells in vitro: Implications for tissue engineering of bone. J. Biomed. Mater. Res. 2002, 60, 292–299.
82. Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–31.
83. Li, G.; Cao, H.; Zhang, W.; Ding, X.; Yang, G.; Qiao, Y.; Liu, X.; Jiang, X. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Appl. Mater. Interfaces 2016, 8, 3840–3852.
84. Kunzler, T. P.; Drobek, T.; Schuler, M.; Ã, N. D. S. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007, 28, 2175–2182.
85. Simpson, J.; Lankford, J.; Al, M. E. T. Effect of titanium surface roughness on moliferation, differentiation, and rotein synthesis of Ahurnan osteoblast-like cells. 1995, 29.
86. Arima, Y.; Iwata, H.Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007, 28, 3074–3082.
87. Ueno, T.; Ikeda, T.; Tsukimura, N.; Ishijima, M. Biomaterials Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials 2016, 108, 177–186.
88. Chen, W.; Shen, X.; Hu, Y.; Xu, K.; Ran, Q.; Yu, Y.; Dai, L.; Yuan, Z.; Huang, L.; Shen, T.; Cai, K. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials 2017, 114, 82–96.
89. Marino, T.; Galano, A.; Russo, N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J. Phys. Chem. B 2014, 118, 10380-10389.
90. Symons, M. C. R. Radicals generated by bone cuttung and fracture. 1996, 20, 831–835.
91. Banfi, G.; Iorio, E. L.; Corsi, M. M.Oxidative stress , free radicals and bone remodeling. 2008, 46, 1550–1555.
92. Yang, Z.; Yang, Y.; Yan, W.; Tu, Q.; Wang, J.; Huang, N. Construction of polyfunctional coatings assisted by gallic acid to facilitate Co-immobilization of diverse biomolecules. ACS Appl. Mater. Interfaces 2013, 5, 10495–10501.
93. Xu, L. Q.; Pranantyo, D.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. ACS Sustain. Chem. Eng. 2016, 4, 4264–4272.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔