跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宏道
研究生(外文):Hung-TaoChen
論文名稱:電紡絲法製備銀奈米纖維網狀結構透明導電薄膜與特性研究
論文名稱(外文):Fabrication and Characterization of Electrospun Silver Nanofiber Networks as Transparent Conductive Films
指導教授:陳引幹陳引幹引用關係
指導教授(外文):In-Gann Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:電紡絲透明導電薄膜聚甲基丙烯酸甲酯三氟醋酸銀
外文關鍵詞:electrospinningtransparent conductive filmsPMMAsilver trifluoroacetate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Extended abstract III
目錄 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 理論基礎與文獻回顧 4
2-1透明導電薄膜簡介 4
2-1-1透明導電薄膜發展現況 4
2-1-2連續平面型透明導電薄膜 5
2-1-3網狀結構型透明導電薄膜 7
2-2靜電紡絲技術 8
2-2-1硬體建置與原理 8
2-2-2金屬/高分子電紡絲複合纖維… 10
2-3靜電紡絲法製備透明導電薄膜 11
2-3-1網狀結構作為透明導電材料本體 11
2-3-2網狀結構作為模板 13
2-3-3網狀結構作為遮罩 14
第三章 實驗方法與儀器設備 25
3-1藥品名稱 25
3-2材料製備與分析 25
3-2-1 PMMA/STA複合電紡纖維噴覆 25
3-2-2熱處理法合成銀網狀結構 26
3-2-3紫外光處理法合成銀網狀結構 27
3-2-4無電鍍法合成銀網狀結構 27
3-3製程設備與分析儀器 28
第四章 結果與討論 40
4-1 PMMA/STA複合電紡纖維噴覆 40
4-1-1高分子PMMA濃度對纖維形貌之影響 40
4-1-2銀前驅物STA摻雜量對纖維形貌之影響 41
4-1-3噴絲時間與穿透度之關係 42
4-1-4結論 43
4-2熱處理法製備銀網狀結構透明導電薄膜 54
4-2-1熱還原時間與銀奈米結構之表面電漿共振效應 54
4-2-2熱處理氣氛對銀網狀結構之形貌、光電特性之影響 55
4-2-3高分子PMMA濃度對銀網狀結構形貌與光電特性之影響 56
4-2-4銀前驅物STA摻雜量對銀網狀結構形貌與光電特性之影響 57
4-2-5結論 57
4-3紫外光處理法製備銀網狀結構透明導電薄膜 67
4-3-1紫外光照射劑量對銀奈米結構形貌之影響 67
4-3-2紫外光照射劑量對PMMA光分解行為探討 68
4-3-3紫外光照射劑量對銀奈米結構還原行為探討 70
4-3-4紫外光照射劑量對銀網狀結構光電特性之影響 71
4-3-5銀前驅物STA摻雜量對銀網狀結構光電特性之影響 71
4-3-6結論 72
4-4無電鍍法製備銀網狀結構透明導電薄膜 82
4-4-1無電鍍反應時間對銀網狀結構形貌與光電效能之影響 82
4-4-2晶種輔助沉積對銀網狀結構形貌光電效能之影響 84
4-4-3銀網狀結構撓曲可靠度測試 85
4-4-4銀網狀結構高溫儲存測試 86
4-4-5結論 87
第五章 總結論 98
參考文獻 102
附錄 112
[1]S. Bae, S. J. Kim, D. Shin, J. H. Ahn and B. H. Hong, Towards industrial applications of graphene electrodes, Phys. Scr., 2012, T146, 014024.
[2]Transparent Conductive Films (TCF) 2015-2025, www.IDTechEx.com/tcf.
[3]https://zh.wikipedia.org/wiki/%E9%9D%9C%E9%9B%BB%E7%B4%A1%E7%B5%B2
[4]H. Wu, L. Hu, M. Rowell, D. Kong, J. Cha, J. McDonough, J. Zhu, Y. Yang, M. McGehee and Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode, Nano Lett., 2010, 10, 4242-4248.
[5]J. Kim, J. Kang, U. Jeong, H. Kim and H. Lee, Catalytic, conductive, and transparent platinum nanofiber webs for FTO-free dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2013, 5, 3176-3181.
[6]H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan and Y. Cui, A transparent electrode based on a metal nanotrough network, Nat. Nanotechnol., 2013, 8, 421-425.
[7]P. C. Hsu, D. Kong, S. Wang, H. Wang, A. Welch, H. Wu and Y. Cui, Electrolessly deposited electrospun metal nanowire transparent electrodes, J. Am. Chem. Soc., 2014, 136, 10593-10596.
[8]T. He, A. Xie, D. Reneker and Y. Zhu, A tough and high-performance transparent electrode from a scalable and transfer-free method, ACS Nano, 2014, 8, 4782-4789.
[9]K. Hong, J. Ham, B. J. Kim, J. Y. Park, D. C. Lim, J. Y. Lee and J. L. Lee, Continuous 1D-metallic microfibers web for flexible organic solar cells, ACS Appl. Mater. Interfaces, 2015, 7, 27397-27404.
[10]C. Bao, J. Yang, H. Gao, F. Li, Y. Yao, B. Yang, G. Fu, X. Zhou, T. Yu, Y. Qin, J. Liu and Z. Zou, In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared, ACS Nano, 2015, 9, 2502-2509.
[11]林秀玲,電紡絲法製備銀/聚甲基丙烯酸甲酯複合網狀結構於透明電極之應用,國立成功大學材料科學及工程學系碩士論文,民國一百零一年。
[12]謝佩穎,以無電鍍法披覆銀於聚甲基丙烯酸甲酯電紡絲網狀結構作為透明電極之研究,國立成功大學材料科學及工程學系碩士論文,民國一百零二年。
[13]T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., 2005, 20, S35-S44.
[14]Y. Y. Cho and C. S. Kuo, Optical and electrical characterization of electrospun Al-doped zinc oxide nanofibers as transparent electrodes, J. Mater. Chem. C, 2016, 4, 7649-7657.
[15]T. Minami, S. Ida and T. Miyata, High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films, 2002, 416, 92-96.
[16]Y. J. Xia and J. Y. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, J. Mater. Chem., 2011, 21, 4927-4936.
[17]廖鎔榆,軟性電子中替代ITO之透明導電材料,工業材料雜誌,2008,256,118-123.
[18]D. S. Hecht, L. B. Hu and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, 23, 1482-1513.
[19]A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
[20]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
[21]C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385-388.
[22]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 2008, 8, 902-907.
[23]J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhre, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 2008, 3, 206-209.
[24]X. H. Lin and J. G. Gai, Synthesis and applications of large-area single-single layer graphene, RSC Adv., 2016, 6, 17818-17844.
[25]X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, Transfer of large-area graphene films for high-performance transparent Conductive Electrodes, Nano Lett., 2009, 9, 4359-4363.
[26]S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 2010, 5, 574-578.
[27]H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan and Y. Cui, Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes, J. Am. Chem. Soc., 2011, 133, 27-29.
[28]P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network, Adv. Mater., 2012, 24, 3326-3332.
[29]T. Akter and W. S. Kim, Reversibly stretchable transparent conductive coatings of spray- deposited silver nanowires, ACS Appl. Mater. Interfaces, 2012, 4, 1855-1859.
[30]M. Liu, Y. Du, Y. E. Miao, Q. Ding, S. He, W. W. Tjiu, J. Pan and T. Liu, Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes, Nanoscale, 2015, 7, 1037-1046.
[31]M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay and S. Magdassi, Transparent conductive coatings by printing coffee ring arrays obtained at room temperature, ACS Nano, 2009, 3, 3537-3542.
[32]A. Mahajan, L. Francis and C. D. Frisbie, Facile method for fabricating flexible substrates with embedded, printed silver lines, ACS Appl. Mater. Interfaces, 2014, 6, 1306-1312.
[33]T. M. Lee, J. H. Noh, S. W. Kwak, B. Kim, J. Jo and I. Kim, Design and fabrication of printed transparent electrode with silver mesh, Microelectron. Eng., 2012, 98, 556-560.
[34]J. Woerle and H. Rost, Roll-to-roll production of transparent conductive films using metallic grids, MRS Bull., 2011, 36, 789-793.
[35]H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan and L. Hu, Transparent nanopaper with tailored optical properties, Nanoscale, 2013, 5, 3787-3792.
[36]C. Preston, Y. Xu, X. Han, J. Munday and L. Hu, Optical haze of transparent and conductive silver nanowire films, Nano Res., 2013, 6, 461-468.
[37]T. Hauger, S. Ibrahim Al-Rafia and J. Buriak, Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity, ACS Appl. Mater. Interfaces, 2013, 5, 12663-12671.
[38]L. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 2010, 4, 2955-2963.
[39]A. Formhals, Process and apparatus for preparing artificial threads, US Patent, 1934, 1975504.
[40]G. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society A, 1964, 280, 383-397.
[41]D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 1996, 7, 216-223.
[42]J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 2001, 43, 261-272.
[43]C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, 1999, 40, 7397-7407.
[44]D. Li and Y. N. Xia, Fabrication of titania nanofibers by electrospinning, Nano Lett., 2003, 3, 555-560.
[45]C. L. Zhang and S. H. Yu, Nanoparticles meet electrospinning recent advances and future prospects, Chem. Soc. Rev., 2014, 43, 4423-4448.
[46]J. M. Kim, H. I. Joh, S. M. Jo, D. J. Ahn, H. Y. Ha, S. A. Hong and S. K. Kim, Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation, Electrochim. Acta, 2010, 55, 4827-4835.
[47]N. A. M. barakat, B. Kim, and H. Y. Kim, Production of Smooth and Pure Nickel Metal Nanofibers by the Electrospinning Technique Nanofibers Possess Splendid Magnetic Properties, J. Phys. Chem. C, 2009, 113, 531-536.
[48]H. Li, W. Pan, W. Zhang, S. Huang and H. Wu, TiN nanofibers: a new material with high conductivity and transmittance for transparent conductive electrodes, Adv. Funct. Mater., 2013, 23, 209-214.
[49]P. Chen, H. Li, S. Hu, T. Zhou, Y. Yan and W. Pan, Copper-coated TiN nanofibers with high electrical conductivity: a new advance in conductive one-dimensional nanostructures, J. Mater. Chem. C, 2015, 3, 7272-7276.
[50]P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Yi Cui, Passivation coating on electrospun copper nanofibers for stable transparent electrodes, ACS Nano, 2012, 6, 5150-5156.
[51]A. Trachtenberg, T. P. Vinod and R. Jelinek, Directed self-assembly of graphene oxide on an electrospun polymer fiber template, Carbon, 2015, 95, 888-894.
[52]T. A. Kim, S. S. Lee, H. Kim and Min Park., Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparent conductor, RSC Adv., 2012, 2, 10717-10724.
[53]Z. Chen, B Cotterell, W. Wang, E. Guenther and S. J. Chua, A mechanical assessment of flexible optoelectronic devices, Thin Solid Films, 2001, 394, 202-206.
[54]IEC 62951-1 Ed. 1.0 Semiconductor devices - Flexible and stretchable semiconductor devices - Part 1: Bending test method for conductive thin films on flexible substrates, International Electrotechnical Commision.
[55]J. Y. Chen, H. C. Chen, J. N. Lin and C. S. Kuo, Effects of polymer media on electrospun mesoporous titania nanofibers, Mater. Chem. Phys., 2008, 107, 480-487.
[56]X. Z. Lin, X. Teng and H. Yang, Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor, Langmuir, 2003, 19, 10081-10085.
[57]林俊男,利用紫外線與熱誘導法製備包裹奈米金屬粒子的高分子電紡絲,國立成功大學材料科學及工程學系碩士論文,民國九十五年。
[58]N. Singh and P. K. Khanna, In situ synthesis of silver nano-particles in polymethylmethacrylate, Mater. Chem. Phys., 2007, 104, 367-372.
[59]D. He, B. Hu, Q. F. Yao, K Wang and S. H. Yu, Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles, ACS Nano, 2009, 3, 3993-4002.
[60]Y. Yang, J. Shi, T. Tanaka and M. Nogami, Self-assembled silver nanochains for surface-enhanced Raman scattering, Langmuir, 2007, 23, 12042-12047.
[61]J. J. Mock, D. R. Smith and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett., 2003, 3, 485-491.
[62]T. Hirata, T. Kashiwagi and J. E. Brown, Thermal and oxidative degradation of poly(methy1methacrylate): weight loss, Macromolecules, 1985, 18, 1410-1418.
[63]R. E. Southward, C. M. Boggs, D. W. Thompson and A. K. St. Clair, Synthesis of surface-metallized polyimide films via in situ reduction of (perfluoroalkanoato)silver(I) complexes in a poly(amic acid) precursor, Chem. Mater., 1998, 10, 1408-1421.
[64]J. D. Peterson, S. Vyazovkin and C. A. Wight, Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate), J. Phys. Chem. B, 1999, 103, 8087-8092.
[65]H. T. Tung, I. G. Chen, J. M. Song, C. W. Yen, Thermally assisted photoreduction of vertical silver nanowires, J. Mater. Chem., 2009, 19, 2386-2391.
[66]C. C. Chang, C. M. Huang, Y. H. Chang and C. S. Kuo, Enhancement of light scattering and photoluminescence in electrospun polymer nanofibers, Opt. Express, 2010, 18, A174.
[67]S. Rajendran, M. Sivakumar and R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes, Mater. Lett., 2004, 58, 641-649.
[68]S. Ramesh, K. H. Leen, K. Kumutha and A. K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochimica Acta A, 2007, 66, 1237-1242.
[69]S. E. Paramonov, N. P. Kuzmina and S. I. Troyanov, Synthesis and crystal structure of silver(I) carboxylate complexes, Ag(PnBu3)[C(CH3)3COO] and Ag(Phen)2[CF3COO]·H2O, Polyhedron., 2003, 22, 837-841.
[70]H. Kaczmarek and H. Chaberska, AFM and XPS study of UV-irradiated poly(methyl methacrylate) films on glass and aluminum support, Appl. Surf. Sci., 2009, 255, 6729-6735.
[71]S. B. Amor, G. Baud, M. Jacquet, G. Nanse, P. Fioux and M. Nardin, XPS characterisation of plasma-treated and alumina-coated PMMA, Appl. Surf. Sci., 2000, 153, 172-183.
[72]A. P. Ameen, R. J. Ward, R. D. Short, G. Beamson and D. A. Briggs, A high-resolution X-ray photoelectron spectroscopy study of trifluoroacetic anhydride labelling of hydroxyl groups: demonstration of the  shift due to -OC(O)CF3, Polymer, 1993, 34, 1795-1799.
[73]A. Hollander, F. Pippig, M. Dubreuil and D. Vangeneugden, Distinguishing surface OH and NHx using TFAA derivatization and XPS, Plasma Process Polym., 2008, 5, 345-349.
[74]J. S. Hammond, S. W. Gaarenstroom and N. Winograd, X-ray photoelectron studies of cadmium- and silver-oxigen surfaces, Anal. Chem., 1975, 47, 2194-2199.
[75]L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen and G. A. Sawatzky, Electronic structure of Ag2O, Phys. Rev. B, 1990, 41, 3190-3199.
[76]A. L. Patterson, The Scherrer formula for x-ray particle size determination, Phys. Rev., 1939, 56, 978-982.
[77]Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline silver nanowires by soft solution processing, Nano Lett., 2002, 2, 165-168.
電子全文 電子全文(網際網路公開日期:20260101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top