|
[1]C. W. Bale, and A. D. Pelton, “The unified interaction parameter formalism: thermodynamic consistency and applications, Metallurgical and Materials Transactions A, vol. 21, no. 7, pp. 1997-2002, 1990. [2]T.-I. Chung, J.-B. Lee, J.-G. Kang et al., “Thermodynamic interactions of Nb and Mo on Ti in liquid iron, Materials transactions, vol. 49, no. 4, pp. 854-859, 2008. [3]A. C. e Silva, “Interaction parameters of oxygen and deoxidants in liquid iron, Journal of Mining and Metallurgy. Section B: Metallurgy, vol. 52, no. 1, pp. 41, 2016. [4]A. D. Pelton, and C. W. Bale, “A modified interaction parameter formalism for non-dilute solutions, Metallurgical and Materials Transactions A, vol. 17, no. 7, pp. 1211-1215, 1986. [5]張立峰, 李燕龍, and 任英, “鋼中非金属夾雜物的相關基礎研究 (Ⅰ)——非穩態澆鑄中的大颗粒夾雜物及夾雜物的形核, 長大, 運動, 去除和捕捉, 鋼鐵, vol. 48, no. 11, pp. 1-10, 2013. [6]張立峰, 李燕龍, and 任英, “鋼中非金属夾雜物的相關基礎研究 (Ⅱ)——夾雜物檢測方法及脱氧熱力學基礎, 鋼鐵, vol. 48, no. 12, pp. 1-8, 2013. [7]Y. Sahai, and T. Emi, Tundish technology for clean steel production: World Scientific, 2008. [8]尹安遠, and 吴素君, “鋼中非金属夾雜物的鑑定, 理化檢驗: 物理分册, vol. 43, no. 8, pp. 395-398, 2007. [9]Y. Bi, A. Karasev, and P. G. Jönsson, “Three‐dimensional investigations of inclusions in ferroalloys, steel research international, vol. 85, no. 4, pp. 659-669, 2014. [10]R. Inoue, R. Kimura, S. Ueda et al., “Applicability of Nonaqueous Electrolytes for Electrolytic Extraction of Inclusion Particles Containing Zr, Ti, and Ce, ISIJ international, vol. 53, no. 11, pp. 1906-1912, 2013. [11]D. Janis, R. Inoue, A. Karasev et al., “Application of different extraction methods for investigation of nonmetallic inclusions and clusters in steels and alloys, Advances in Materials Science and Engineering, vol. 2014, 2014. [12]H. Feifei, L. Bo, L. Da et al., “Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism, Journal of Rare Earths, vol. 29, no. 6, pp. 609-613, 2011. [13]A. Katsumata, and H. Todoroki, “Effect of rare earth metal on inclusion composition in molten stainless steel, Iron and Steelmaker(USA), vol. 29, no. 7, pp. 51-57, 2002. [14]R. M. Ferrizz, R. J. Gorte, and J. M. Vohs, “Determining the Ce2O2S–CeOx phase boundary for conditions relevant to adsorption and catalysis, Applied Catalysis B: Environmental, vol. 43, no. 3, pp. 273-280, 2003. [15]F. Pickering, Non-metallic inclusions in steel, Taylor & Francis, 1978. [16]D. Y. Sheng, M. Söder, P. Jönsson et al., “Modeling micro‐inclusion growth and separation ingas‐stirred ladles, Scandinavian journal of metallurgy, vol. 31, no. 2, pp. 134-147, 2002. [17]G. Thewlis, “Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels, Materials science and technology, vol. 22, no. 2, pp. 153-166, 2006. [18]F. Cosandey, D. Li, F. Sczerzenie et al., “The effect of cerium on high temperature tensile and creep behavior of a superalloy, Metallurgical and Materials Transactions A, vol. 14, no. 3, pp. 611-621, 1983. [19]D. Li, F. Cosandey, G. Maurer et al., “Understanding the role of cerium during VIM refining of nickel-chromium and nickel-iron alloys, Metallurgical Transactions B, vol. 13, no. 4, pp. 603-611, 1982. [20]Y.-d. Li, C.-j. Liu, C.-l. Li et al., “A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium, Journal of Iron and Steel Research, International, vol. 22, no. 6, pp. 457-463, 2015. [21]S. Ogibayashi, “Advances in technology of oxide metallurgy, Nippon Steel Tech. Rep.(Japan), pp. 70-76, 1994. [22]H. Bhadeshia, and R. Honeycombe, Steels: microstructure and properties: Butterworth-Heinemann, 2017. [23]L. Holappaa, and O. Wijkb, “Inclusion Engineering, Treatise on Process Metallurgy, Volume 3: Industrial Processes, vol. 3, pp. 347, 2013. [24]S. S. Babu, “The mechanism of acicular ferrite in weld deposits, Current opinion in Solid state and Materials Science, vol. 8, no. 3, pp. 267-278, 2004. [25]W. Bin, and S. Bo, “In situ observation of the evolution of intragranular acicular ferrite at Ce‐containing inclusions in 16Mn steel, steel research international, vol. 83, no. 5, pp. 487-495, 2012. [26]M. Chapa, S. F. Medina, V. López et al., “Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures, ISIJ international, vol. 42, no. 11, pp. 1288-1296, 2002. [27]K. Alogab, D. Matlock, J. Speer et al., “The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel, ISIJ international, vol. 47, no. 2, pp. 307-316, 2007. [28]D. Fairchild, D. Howden, and W. A. Clark, “The mechanism of brittle fracture in a microalloyed steel: part I. inclusion-induced cleavage, Metallurgical and Materials Transactions A, vol. 31, no. 3, pp. 641-652, 2000. [29]D. Fairchild, D. Howden, and W. A. Clark, “The mechanism of brittle fracture in a microalloyed steel: part II. mechanistic modeling, Metallurgical and Materials Transactions A, vol. 31, no. 3, pp. 653-667, 2000. [30]A. Kojima, A. Kiyose, R. Uemori et al., “Super high HAZ toughness technology with fine microstructure imparted by fine particles, Shinnittetsu Giho, pp. 2-5, 2004. [31]K. Zhu, and Z. Yang, “Effect of magnesium on the austenite grain growth of the heat-affected zone in low-carbon high-strength steels, Metallurgical and Materials Transactions A, vol. 42, no. 8, pp. 2207-2213, 2011. [32]M. Prikryl, A. Kroupa, G. Weatherly et al., “Precipitation behavior in a medium carbon, Ti-VN microalloyed steel, Metallurgical and Materials Transactions A, vol. 27, no. 5, pp. 1149-1165, 1996. [33]W. Yan, Y. Shan, and K. Yang, “Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metallurgical and Materials Transactions A, vol. 37, no. 7, pp. 2147-2158, 2006. [34]余景生, and 余宗森, 稀土在鋼鐵中的應用, 北京: 冶金工業出版社, 1987. [35]李振宏, and 伍虹, “我國稀土應用的現狀與前景, 稀土, vol. 17, no. 6, pp. 48-53, 1996. [36]G. Thewlis, W. Chao, P. Harrison et al., “Acicular ferrite development in autogenous laser welds using cerium sulphide particle dispersed steels, Materials Science and Technology, vol. 24, no. 7, pp. 771-786, 2008. [37]W. Bin, S. Bo, P. Ning et al., “Influence of Ce on characteristics of inclusions and microstructure of pure iron, Journal of Iron and Steel Research, International, vol. 18, no. 2, pp. 38-44, 2011. [38]S. K. Kwon, Y.-M. Kong, and J. H. Park, “Effect of Al deoxidation on the formation behavior of inclusions in Ce-added stainless steel melts, Metals and Materials International, vol. 20, no. 5, pp. 959-966, 2014. [39]C. C. Wu, X. H. Yang, and G. G. Cheng, Formation conditions for Ce2O2S and CeAlO3 in cerium treated Al-killed steels. pp. 1032-1035. [40]黎文献, 鎂及鎂合金, 長沙: 中南大學出版社, 2005. [41]J. Zhang, “Thermodynamic fundamentals of deoxidation equilibria. [42]Y. Ren, L. Zhang, W. Yang et al., “Formation and thermodynamics of Mg-Al-Ti-O complex inclusions in Mg-Al-Ti-deoxidized steel, Metallurgical and Materials Transactions B, vol. 45, no. 6, pp. 2057-2071, 2014. [43]J.-J. Pak, J.-O. Jo, S.-I. Kim et al., “Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides, ISIJ international, vol. 47, no. 1, pp. 16-24, 2007. [44]L. Zhang, and W. Pluschkell, “Nucleation and growth kinetics of inclusions during liquid steel deoxidation, Ironmaking & steelmaking, vol. 30, no. 2, pp. 106-110, 2003. [45]O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical properties of inorganic substances: Springer Berlin, 1991. [46]Q. Han, Rare earth, alkaline earth and other elements in metallurgy: Ios PressInc, 1998. [47]郭锋, 林勤, and 孫學義, “稀土碳锰纯净鋼中夾雜物形成與轉化的熱力學計算及觀察分析, 中國稀土學報, vol. 22, no. 5, pp. 614-618, 2004. [48]劉延强, 王麗君, 郭俊波 et al., “高鐵扣件弹簧鋼中含 Ce夾雜物生成的熱力學分析, 中國有色金属學報, no. 3, pp. 720-726, 2013.
|