[1] 翁志弘,「農藥市場發展現況及趨勢」,PRIDE2016001,1期,頁1-18,2016。
[2] 黃慶文、李宏萍,「農產品安全管理與宣導教育-從農藥殘留檢驗談農作物安全」,農政與農情,239期,頁6-11,2012。
[3] V. Dhull, A. Gahlaut, N. Dilbaghi, and V. Hooda, Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review, Biochemistry Research International, Vol. 2013, p. 731501, 2013.
[4] K. H. Kim, E. Kabir, and S. A. Jahan, Exposure to Pesticides and the Associated Human Health Effects, Science of the Total Environment, Vol. 575, pp. 525-535, 2017.
[5] W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis, and F. M. Raushel, Structure-Activity Relationships in the Hydrolysis of Substrates by the Phosphotriesterase from Pseudomonas Diminuta, Biochemistry, Vol. 28, pp. 4650-4655, 1989.
[6] S. Chapalamadugu and G. R. Chaudhry, Microbiological and Biotechnological Aspects of Metabolism of Carbamates and Organophosphates, Critical Reviews in Biotechnology, Vol. 12, pp. 357-389, 1992.
[7] 黃慶文、涂青宇,「外銷農產品農藥殘留基準簡介」,藥毒所專題報導,117期,頁1-11,2015。[8] D. W. Li, W. L. Zhai, Y. T. Li, and Y. T. Long, Recent Progress in Surface Enhanced Raman Spectroscopy for the Detection of Environmental Pollutants, Microchimica Acta, Vol. 181, pp. 23-43, 2014.
[9] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, Rapid Simultaneous Detection of Multi-Pesticide Residues on Apple Using SERS Technique, Analyst, Vol. 139, pp. 5148-5154, 2014.
[10] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, and L. Guo, Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables, Analytical Chemistry, Vol. 88, pp. 2149-2155, 2016.
[11] H. Ibrahim, R. Kheir, S. Helmi, J. Lewis, and M. Crane, Effects of Organophosphorus, Carbamate, Pyrethroid and Organochlorine Pesticides, and a Heavy Metal on Survival and Cholinesterase Activity of Chironomus Riparius Meigen, Bulletin of Environmental Contamination and Toxicology, Vol. 60, pp. 448-455, 1998.
[12] A. L. Simonian, J. K. Grimsley, A. W. Flounders, J. S. Schoeniger, T. C. Cheng, J. J. DeFrank, and J. R. Wild, Enzyme-Based Biosensor for the Direct Detection of Fluorine-Containing Organophosphates, Analytica Chimica Acta, Vol. 442, pp. 15-23, 2001.
[13] E. I. Rainina, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian, and J. R. Wild, The Development of a New Biosensor Based on Recombinant E. Coli for the Direct Detection of Organophosphorus Neurotoxins, Biosensors and Bioelectronics, Vol. 11, pp. 991-1000, 1996.
[14] N. Verma and A. Bhardwaj, Biosensor Technology for Pesticides—a Review, Applied Biochemistry and Biotechnology, Vol. 175, pp. 3093-3119, 2015.
[15] M. D. Luque de Castro and M. C. Herrera, Enzyme Inhibition-Based Biosensors and Biosensing Systems: Questionable Analytical Devices, Biosensors and Bioelectronics, Vol. 18, pp. 279-294, 2003.
[16] M. Swartz, HPLC Detectors: A Brief Review, Journal of Liquid Chromatography & Related Technologies, Vol. 33, pp. 1130-1150, 2010.
[17] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, Raman Spectroscopy, Analytical Chemistry, Vol. 70, pp. 341-362, 1998.
[18] M. D. Li, Y. Cui, M. X. Gao, J. Luo, B. Ren, and Z. Q. Tian, Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane, Analytical Chemistry, Vol. 80, pp. 5118-5125, 2008.
[19] M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy, Chemical Society Reviews, Vol. 37, pp. 885-897, 2008.
[20] S. Pang, T. Yang, and L. He, Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides, Trends in Analytical Chemistry, Vol. 85, pp. 73-82, 2016.
[21] K. Katrin, K. Harald, I. Irving, R. D. Ramachandra, and S. F. Michael, Surface-Enhanced Raman Scattering and Biophysics, Journal of Physics: Condensed Matter, Vol. 14, pp. R597-R624, 2002.
[22] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, Micro-Raman Spectroscopic Identification of Bacterial Cells of the Genus Staphylococcus and Dependence on Their Cultivation Conditions, Analyst, Vol. 130, pp. 1543-1550, 2005.
[23] K. C. Schuster, E. Urlaub, and J. R. Gapes, Single-Cell Analysis of Bacteria by Raman Microscopy: Spectral Information on the Chemical Composition of Cells and on the Heterogeneity in a Culture, Journal of Microbiological Methods, Vol. 42, pp. 29-38, 2000.
[24] S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, Vol. 275, pp. 1102-1106, 1997.
[25] A. Campion and P. Kambhampati, Surface-Enhanced Raman Scattering, Chemical Society Reviews, Vol. 27, pp. 241-250, 1998.
[26] N. P. W. Pieczonka and R. F. Aroca, Single Molecule Analysis by Surfaced-Enhanced Raman Scattering, Chemical Society Reviews, Vol. 37, pp. 946-954, 2008.
[27] R. A. Tripp, R. A. Dluhy, and Y. Zhao, Novel Nanostructures for SERS Biosensing, Nano Today, Vol. 3, pp. 31-37, 2008.
[28] S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, Nanofabricated SERS-Active Substrates for Single-Molecule to Virus Detection in Vitro: A Review, Biosensors and Bioelectronics, Vol. 61, pp. 232-240, 2014.
[29] S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, Controllable Nanofabrication of Aggregate-Like Nanoparticle Substrates and Evaluation for Surface-Enhanced Raman Spectroscopy, ACS Nano, Vol. 3, pp. 3845-3853, 2009.
[30] K. Sivashanmugan, J. D. Liao, P. L. Shao, B. H. Liu, T. Y. Tseng, and C. Y. Chang, Intense Raman Scattering on Hybrid Au/Ag Nanoplatforms for the Distinction of MMP-9-Digested Collagen Type-I Fiber Detection, Biosensors and Bioelectronics, Vol. 72, pp. 61-70, 2015.
[31] C. W. Chang, J. D. Liao, H. C. Chang, L. K. Lin, Y. Y. Lin, and C. C. Weng, Fabrication of Nano-Indented Cavities on Au for the Detection of Chemically-Adsorbed DTNB Molecular Probes through SERS Effect, Journal of Colloid and Interface Science, Vol. 358, pp. 384-391, 2011.
[32] J. L. Abell, J. D. Driskell, R. A. Dluhy, R. A. Tripp, and Y. P. Zhao, Fabrication and Characterization of a Multiwell Array SERS Chip with Biological Applications, Biosensors and Bioelectronics, Vol. 24, pp. 3663-3670, 2009.
[33] J. Fu, Z. Cao, and L. Yobas, Localized Oblique-Angle Deposition: Ag Nanorods on Microstructured Surfaces and Their SERS Characteristics, Nanotechnology, Vol. 22, p. 505302, 2011.
[34] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing, Nano Letters, Vol. 9, pp. 3922-3929, 2009.
[35] S. Habouti, M. Mátéfi Tempfli, C. H. Solterbeck, M. Es Souni, S. Mátéfi Tempfli, and M. Es Souni, On-Substrate, Self-Standing Au-Nanorod Arrays Showing Morphology Controlled Properties, Nano Today, Vol. 6, pp. 12-19, 2011.
[36] D. Gaspar, A. C. Pimentel, T. Mateus, J. P. Leitao, J. Soares, B. P. Falcao, A. Araujo, A. Vicente, S. A. Filonovich, H. Aguas, R. Martins, and I. Ferreira, Influence of the Layer Thickness in Plasmonic Gold Nanoparticles Produced by Thermal Evaporation, Scientific Reports, Vol. 3, p. 1469, 2013.
[37] J. M. Lyznicki, W. R. Kennedy, D. C. Young, W. D. Skelton, J. P. Howe, R. M. Davis, M. Genel, M. S. Karlan, P. J. Numann, J. A. Riggs, P. J. Slanetz, M. A. Spillman, M. Williams, J. R. Allen, and R. C. Rinaldi, Educational and Informational Strategies to Reduce Pesticide Risks, Preventive Medicine, Vol. 26, pp. 191-200, 1997.
[38] G. Liu and Y. Lin, Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents, Analytical Chemistry, Vol. 77, pp. 5894-5901, 2005.
[39] M. Wang and Z. Li, Nano-Composite ZrO2/Au Film Electrode for Voltammetric Detection of Parathion, Sensors and Actuators B: Chemical, Vol. 133, pp. 607-612, 2008.
[40] N. D. Israelsen, C. Hanson, and E. Vargis, Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction, The Scientific World Journal, Vol. 2015, p. 124582, 2015.
[41] S. M. Chang and R. A. Doong, ZrO2 Thin Films with Controllable Morphology and Thickness by Spin-Coated Sol-Gel Method, Thin Solid Films, Vol. 489, pp. 17-22, 2005.
[42] Y. Pan, Y. Gao, D. Kong, G. Wang, J. Hou, S. Hu, H. Pan, and J. Zhu, Interaction of Au with Thin ZrO2 Films: Influence of ZrO2 Morphology on the Adsorption and Thermal Stability of Au Nanoparticles, Langmuir, Vol. 28, pp. 6045-6051, 2012.
[43] A. Camposeo, D. Spadaro, D. Magrì, M. Moffa, P. G. Gucciardi, L. Persano, O. M. Maragò, and D. Pisignano, Surface-Enhanced Raman Spectroscopy in 3D Electrospun Nanofiber Mats Coated with Gold Nanorods, Analytical and Bioanalytical Chemistry, Vol. 408, pp. 1357-1364, 2016.
[44] G. Keresztury, Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy, Vol. 1, p. 71, 2006.
[45] T. Waldmann, J. Klein, H. E. Hoster, and R. J. Behm, Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature Stm Study, ChemPhysChem, Vol. 14, pp. 162-169, 2013.
[46] A. Nawrocka, J. Lamorska, S. Grundas, and A. Stepniewski, Determination of Food Quality by Using Spectroscopic Methods, Advances in Agrophysical Research, pp. 347-368, 2013.
[47] P. Atkins and J. De Paula, Spectroscopy: Molecular Rotations and Vibrations, Elements of Physical Chemistry, pp. 447-471, 2013.
[48] H. J. Bowley, D. L. Gerrard, J. D. Louden, G. Turrell, D. J. Gardiner, and P. R. Graves, Introduction to Raman Scattering, Practical Raman Spectroscopy, pp. 1-12, 2012.
[49] 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期,頁25-28,1985。
[50] 李冠卿,「表面強化拉曼散射」,物理雙月刊,5期,頁185-188,1983。
[51] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chemical Physics Letters, Vol. 26, pp. 163-166, 1974.
[52] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Chapter 1 - Basic Theory, Introductory Raman Spectroscopy (Second Edition), pp. 1-94, 2003.
[53] R. L. McCreery, Magnitude of Raman Scattering, Raman Spectroscopy for Chemical Analysis, pp. 15-33, 2005.
[54] D. L. Jeanmaire and R. P. Van Duyne, Surface Raman Spectroelectrochemistry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 84, pp. 1-20, 1977.
[55] M. G. Albrecht and J. A. Creighton, Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode, Journal of the American Chemical Society, Vol. 99, pp. 5215-5217, 1977.
[56] M. Moskovits, Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals, The Journal of Chemical Physics, Vol. 69, pp. 4159-4161, 1978.
[57] S. Hong and X. Li, Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions, Journal of Nanomaterials, Vol. 2013, pp. 1-9, 2013.
[58] M. Moskovits, Surface-Enhanced Spectroscopy, Reviews of Modern Physics, Vol. 57, pp. 783-826, 1985.
[59] P. J. Huang, L. K. Chau, T. S. Yang, L. L. Tay, and T. T. Lin, Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection, Advanced Functional Materials, Vol. 19, pp. 242-248, 2009.
[60] Q. Ye, J. Fang, and L. Sun, Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group, The Journal of Physical Chemistry B, Vol. 101, pp. 8221-8224, 1997.
[61] A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering, Journal of the American Chemical Society, Vol. 117, pp. 11807-11808, 1995.
[62] Y. C. Liu and R. L. McCreery, Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces, Analytical Chemistry, Vol. 69, pp. 2091-2097, 1997.
[63] R. J. C. Brown and M. J. T. Milton, Nanostructures and Nanostructured Substrates for Surface-Enhanced Raman Scattering (SERS), Journal of Raman Spectroscopy, Vol. 39, pp. 1313-1326, 2008.
[64] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, Charge‐Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions, The Journal of Chemical Physics, Vol. 84, pp. 4174-4180, 1986.
[65] 吳民耀、劉威志,「表面電漿子理論與模擬」,物理雙月刊,28期,頁486-496,2006。[66] A. Otto, Surface-Enhanced Raman Scattering: Classical and Chemical Origins, Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects, pp. 289-418, 1984.
[67] H. Xu and M. Käll, Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory, Surface-Enhanced Raman Scattering: Physics and Applications, pp. 87-103, 2006.
[68] L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé, and S. Efrima, Silver Metal Induced Surface Enhanced Raman of Bacteria, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 208, pp. 357-362, 2002.
[69] N. P. W. Pieczonka, P. J. G. Goulet, and R. F. Aroca, Applications of the Enhancement of Resonance Raman Scattering and Fluorescence by Strongly Coupled Metallic Nanostructures, Surface-Enhanced Raman Scattering: Physics and Applications, pp. 197-216, 2006.
[70] D. P. Pursell and H. L. Dai, Photochemistry of Vinyl Chloride Physisorbed on Ag(111) through Molecular Anion Formation Induced by Substrate Electron Attachment, The Journal of Physical Chemistry B, Vol. 110, pp. 10374-10382, 2006.
[71] Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, Analyses of Phosmet Residues in Apples with Surface-Enhanced Raman Spectroscopy, Food Control, Vol. 37, pp. 153-157, 2014.
[72] S. Kumar, P. Goel, and J. P. Singh, Flexible and Robust SERS Active Substrates for Conformal Rapid Detection of Pesticide Residues from Fruits, Sensors and Actuators B: Chemical, Vol. 241, pp. 577-583, 2017.
[73] K. Sivashanmugan, H. Lee, C. H. Syu, B. H. C. Liu, and J. D. Liao, Nanoplasmonic Au/Ag/Au Nanorod Arrays as SERS-Active Substrate for the Detection of Pesticides Residue, Journal of the Taiwan Institute of Chemical Engineers, Vol. 75, pp. 287-291, 2017.
[74] J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, Vol. 27, pp. 535-543, 2006.
[75] J. C. Garcia, L. M. R. Scolfaro, A. T. Lino, V. N. Freire, G. A. Farias, C. C. Silva, H. W. Leite Alves, S. C. P. Rodrigues, and E. F. da Silva Jr, Structural, Electronic, and Optical Properties of ZrO2 from Ab Initio Calculations, Journal of Applied Physics, Vol. 100, p. 104103, 2006.
[76] G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H. P. Bossmann, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Journal of the American Ceramic Society, Vol. 90, pp. 2935-2940, 2007.
[77] A. Vioux, Nonhydrolytic Sol-Gel Routes to Oxides, Chemistry of Materials, Vol. 9, pp. 2292-2299, 1997.
[78] C. J. Brinker and G. W. Scherer, Sol → Gel → Glass: I. Gelation and Gel Structure, Journal of Non-Crystalline Solids, Vol. 70, pp. 301-322, 1985.
[79] B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides, ACS Applied Materials & Interfaces, Vol. 7, pp. 6518-6529, 2015.
[80] Z. Zhang, Q. Yu, H. Li, A. Mustapha, and M. Lin, Standing Gold Nanorod Arrays as Reproducible SERS Substrates for Measurement of Pesticides in Apple Juice and Vegetables, Journal of Food Science, Vol. 80, pp. N450-N458, 2015.
[81] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study, The Journal of Physical Chemistry C, Vol. 111, pp. 13794-13803, 2007.
[82] Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation, Chemical Communications, Vol. 47, pp. 3784-3786, 2011.
[83] S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta, and J. Akhtar, Synthesis, Phase to Phase Deposition and Characterization of Rutile Nanocrystalline Titanium Dioxide (TiO2) Thin Films, Applied Surface Science, Vol. 264, pp. 737-742, 2013.
[84] C. Kranz and B. Mizaikoff, Microscopic Techniques for the Characterization of Gold Nanoparticles, Gold Nanoparticles in Analytical Chemistry, Vol. 66, pp. 257-299, 2014.
[85] G. Karlowatz, Strain Related Effects on the Band Structure , Advanced Monte Carlo Simulation for Semiconductor Devices, p. 1, 2009.
[86] 林麗娟,「X光繞射原理及其應用」,工業材料,86期,頁100-109,1994。[87] R. J. H. Clark, Raman Microscopy in the Identification of Pigments on Manuscripts and Other Artwork, Scientific Examination of Art: Modern Techniques in Conservation and Analysis, pp. 162-185, 2003.
[88] H. Lee, C. K. Yao, J. D. Liao, P. L. Shao, M. H. N. Thi, Y. H. Lin, and Y. D. Juang, Annealed Thin-Film Zirconia Coating Adhered on 316L Stainless Steel as a Bio-Inert Indwelling Needle, Materials & Design, Vol. 88, pp. 651-658, 2015.
[89] Q. Li and P. Dong, Preparation of Nearly Monodisperse Multiply Coated Submicrospheres with a High Refractive Index, Journal of Colloid and Interface Science, Vol. 261, pp. 325-329, 2003.
[90] W. L. Zhai, D. W. Li, L. L. Qu, J. S. Fossey, and Y. T. Long, Multiple Depositions of Ag Nanoparticles on Chemically Modified Agarose Films for Surface-Enhanced Raman Spectroscopy, Nanoscale, Vol. 4, pp. 137-142, 2012.