跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志堅
研究生(外文):Chih-ChienChen
論文名稱:利用溶膠凝膠法製備氧化鋯奈米纖維成為表面增顯拉曼散射基材以檢測微量農藥成分
論文名稱(外文):Zirconia nanofibers made by the sol-gel method as a SERS substrate for trace detection of pesticides
指導教授:廖峻德廖峻德引用關係劉浩志王士豪王士豪引用關係
指導教授(外文):Jiunn-Der LiaoBernard HaoChih LiuShyh-Hau Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:表面增顯拉曼散射氧化鋯奈米纖維奈米金顆粒溶膠凝膠法電子束蒸鍍農藥
外文關鍵詞:Surface-enhanced Raman scattering (SERS)zirconia nanofibersgold nanoparticlessol-gele-beam evaporationpesticides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將以模板輔助型的方式來製備SERS活性基板,利用溶膠凝膠法合成氧化鋯奈米纖維,透過調整前驅溶液濃度以變化氧化鋯試片的表面形貌,並結合電子束蒸鍍法沉積金奈米顆粒於氧化鋯試片表面以製備為SERS活性基板,氧化鋯對於有機磷劑具有強親和性的特性,能縮短有機磷劑與表面結構的距離,使其落於熱點區域的機率提升,進而增強SERS效應。
於氧化鋯試片的製備研究中,藉由調整前驅溶液濃度以評估其對於表面結構的影響,其結果顯示:於低濃度的試片中,其表面形貌為平坦表面,隨著濃度的提升,奈米纖維的結構逐漸生成,而於濃度0.5 M的試片中以可觀察到部分區域因奈米纖維的生成密集而團聚為塊狀;於SERS活性基板增顯效應的評估中,以R6G作為分子探針,其結果顯示:使用雷射波長633 nm可激發較強的表面電漿共振,而藉由增顯因子的計算,得知以濃度0.3 M所製備的SERS活性基板具有最佳的增顯效應,其增顯因子達2.1 × 107,可應用於單分子的檢測,而其它基板的增顯因子也皆有106。
而於微量農藥檢測的研究中,選用四種農藥作為檢測物質:(1)益滅松、(2)加保利、(3)百滅寧與(4)賽滅寧,其結果顯示本研究之最佳SERS活性基板於賽滅寧的檢測極限濃度達10-6 M,加保利與百滅寧為10-7 M,而益滅松更高達10-8 M,表示本研究之最佳SERS活性基板於微量農藥檢測中具有高靈敏度的表現,此外,混合農藥的檢測分析中,更證實了氧化鋯可提升有機磷劑其增顯效益。
綜合以上的研究成果顯示:利用溶膠凝膠法製備氧化鋯試片,並以電子束蒸鍍沉積奈米金顆粒以製備為SERS活性基板的製程方式,不但於微量農藥檢測中有高靈敏度的表現,且對於有機磷劑有較高的選擇性表現,此外,其製備流程簡易且適用於大範圍面積的製備,正適合應用於SERS技術於商品化發展的新趨勢。
Trace detection of pesticide residues is necessary to assure food safety, given the potential health risks the pesticide residues may pose to consumers, thus a simple, rapid and effective analytical method is required. Surface-enhanced Raman scattering (SERS) has been well developed for detecting target species. Herein, gold nanoparticles deposited onto a template zirconia nanofibers prepared by the spin-coated sol-gel method were used as SERS-active substrates. The morphologies of zirconia samples were easily controlled by adjusting the precursor concentrations. The SERS effects of samples were firstly evaluated by different laser wavelengths using rhodamine 6G (R6G) as the probe molecule. The sample Au/Z_0.3 exhibited the highest enhancement factor of 2.1 × 107. Furthermore, the optimized SERS-active substrates Au/Z_0.3 were competent to detect four types of pesticides, including phosmet, carbaryl, permethrin and cypermethrin. The limits of detection were 10-6 M for cypermethrin, 10-7 M for carbaryl and permethrin, and 10-8 M for phosmet. In the Raman analysis of mixed pesticides, the substrates showed high selectivity to organophosphates. Finally, the characteristic peaks of each pesticide could be still identified in the simulation of detecting pesticides on fruits. The results show that the sample Au/Z_0.3 is a promising tool for trace detection of pesticides on fruits.
摘要 I
Extended Abstract II
誌謝 XI
目錄 XIII
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 6
1.3 研究目的 7
第二章 文獻回顧與理論基礎 8
2.1 振動光譜 8
2.2 拉曼光譜基本理論 10
2.2.1 拉曼散射原理 10
2.2.2 拉曼光譜之極化誘發理論 12
2.3 表面增顯拉曼散射光譜 13
2.3.1 表面增顯拉曼散射光譜之發展與簡述 13
2.3.2 表面增顯拉曼散射光譜於奈米結構表面之機制 13
2.3.3 表面電漿(surface plasmon) 15
2.3.4 電磁效應(electromagnetic effect) 17
2.3.5 化學效應(chemical effect) 19
2.4 表面增顯拉曼散射光譜應用於微量農藥檢測 22
2.5 表面增顯拉曼活性基板製備 27
2.5.1 減去法(top-down fabrication) 27
2.5.2 加成法(bottom-up assembly) 29
2.5.3 複合型(combination technique) 29
2.5.4 模板輔助型(template-assisted fabrication) 30
2.6 氧化鋯特性與其製備 31
2.6.1 氧化鋯特性 31
2.6.2 以溶膠凝膠法製備氧化鋯試片 34
第三章 材料與方法 37
3.1 實驗設計與流程 37
3.2 實驗材料與方法 38
3.2.1 基板清洗 38
3.2.2 溶液製備 39
3.2.3 基板製作 40
3.2.4 拉曼檢測 41
3.2.5 拉曼光譜分析之校正 42
3.2.6 訊號處理 43
3.2.7 增顯因子之評估計算 44
3.3 製程儀器 46
3.3.1 電子束蒸鍍機 46
3.4 分析儀器 47
3.4.1 掃描式電子顯微鏡(SEM) 47
3.4.2 X射線繞射分析儀(XRD) 48
3.4.3 顯微拉曼光譜儀(Raman spectrometer) 51
第四章 SERS活性基板應用於分子探針之研究 53
4.1 氧化鋯試片特性分析 53
4.1.1 組成成分分析 53
4.1.2 表面形貌分析 55
4.2 SERS活性基板之表面形貌與元素分析 56
4.3 SERS活性基板之效益評估 58
4.3.1 激發雷射波長之最佳化 58
4.3.2 表面增顯拉曼散射光譜之分析 61
4.3.3 SERS機制之探討 62
第五章 SERS活性基板應用於微量農藥檢測之研究 65
5.1 SERS活性基板於農藥樣品之檢測極限分析 65
5.1.1 益滅松(phosmet) 65
5.1.2 加保利(carbaryl) 66
5.1.3 百滅寧(permethrin) 67
5.1.4 賽滅寧(cypermethrin) 68
5.2 SERS活性基板於多重農藥之應用 69
5.2.1 SERS活性基板於單次多重農藥之檢測 69
5.2.2 SERS活性基板於有機磷劑之親和性分析 71
5.3 SERS活性基板於水果實體之模擬檢測 72
結論 75
未來展望 76
參考文獻 77
[1] 翁志弘,「農藥市場發展現況及趨勢」,PRIDE2016001,1期,頁1-18,2016。
[2] 黃慶文、李宏萍,「農產品安全管理與宣導教育-從農藥殘留檢驗談農作物安全」,農政與農情,239期,頁6-11,2012。
[3] V. Dhull, A. Gahlaut, N. Dilbaghi, and V. Hooda, Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review, Biochemistry Research International, Vol. 2013, p. 731501, 2013.
[4] K. H. Kim, E. Kabir, and S. A. Jahan, Exposure to Pesticides and the Associated Human Health Effects, Science of the Total Environment, Vol. 575, pp. 525-535, 2017.
[5] W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis, and F. M. Raushel, Structure-Activity Relationships in the Hydrolysis of Substrates by the Phosphotriesterase from Pseudomonas Diminuta, Biochemistry, Vol. 28, pp. 4650-4655, 1989.
[6] S. Chapalamadugu and G. R. Chaudhry, Microbiological and Biotechnological Aspects of Metabolism of Carbamates and Organophosphates, Critical Reviews in Biotechnology, Vol. 12, pp. 357-389, 1992.
[7] 黃慶文、涂青宇,「外銷農產品農藥殘留基準簡介」,藥毒所專題報導,117期,頁1-11,2015。
[8] D. W. Li, W. L. Zhai, Y. T. Li, and Y. T. Long, Recent Progress in Surface Enhanced Raman Spectroscopy for the Detection of Environmental Pollutants, Microchimica Acta, Vol. 181, pp. 23-43, 2014.
[9] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, Rapid Simultaneous Detection of Multi-Pesticide Residues on Apple Using SERS Technique, Analyst, Vol. 139, pp. 5148-5154, 2014.
[10] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, and L. Guo, Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables, Analytical Chemistry, Vol. 88, pp. 2149-2155, 2016.
[11] H. Ibrahim, R. Kheir, S. Helmi, J. Lewis, and M. Crane, Effects of Organophosphorus, Carbamate, Pyrethroid and Organochlorine Pesticides, and a Heavy Metal on Survival and Cholinesterase Activity of Chironomus Riparius Meigen, Bulletin of Environmental Contamination and Toxicology, Vol. 60, pp. 448-455, 1998.
[12] A. L. Simonian, J. K. Grimsley, A. W. Flounders, J. S. Schoeniger, T. C. Cheng, J. J. DeFrank, and J. R. Wild, Enzyme-Based Biosensor for the Direct Detection of Fluorine-Containing Organophosphates, Analytica Chimica Acta, Vol. 442, pp. 15-23, 2001.
[13] E. I. Rainina, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian, and J. R. Wild, The Development of a New Biosensor Based on Recombinant E. Coli for the Direct Detection of Organophosphorus Neurotoxins, Biosensors and Bioelectronics, Vol. 11, pp. 991-1000, 1996.
[14] N. Verma and A. Bhardwaj, Biosensor Technology for Pesticides—a Review, Applied Biochemistry and Biotechnology, Vol. 175, pp. 3093-3119, 2015.
[15] M. D. Luque de Castro and M. C. Herrera, Enzyme Inhibition-Based Biosensors and Biosensing Systems: Questionable Analytical Devices, Biosensors and Bioelectronics, Vol. 18, pp. 279-294, 2003.
[16] M. Swartz, HPLC Detectors: A Brief Review, Journal of Liquid Chromatography & Related Technologies, Vol. 33, pp. 1130-1150, 2010.
[17] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, Raman Spectroscopy, Analytical Chemistry, Vol. 70, pp. 341-362, 1998.
[18] M. D. Li, Y. Cui, M. X. Gao, J. Luo, B. Ren, and Z. Q. Tian, Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane, Analytical Chemistry, Vol. 80, pp. 5118-5125, 2008.
[19] M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy, Chemical Society Reviews, Vol. 37, pp. 885-897, 2008.
[20] S. Pang, T. Yang, and L. He, Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides, Trends in Analytical Chemistry, Vol. 85, pp. 73-82, 2016.
[21] K. Katrin, K. Harald, I. Irving, R. D. Ramachandra, and S. F. Michael, Surface-Enhanced Raman Scattering and Biophysics, Journal of Physics: Condensed Matter, Vol. 14, pp. R597-R624, 2002.
[22] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, Micro-Raman Spectroscopic Identification of Bacterial Cells of the Genus Staphylococcus and Dependence on Their Cultivation Conditions, Analyst, Vol. 130, pp. 1543-1550, 2005.
[23] K. C. Schuster, E. Urlaub, and J. R. Gapes, Single-Cell Analysis of Bacteria by Raman Microscopy: Spectral Information on the Chemical Composition of Cells and on the Heterogeneity in a Culture, Journal of Microbiological Methods, Vol. 42, pp. 29-38, 2000.
[24] S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, Vol. 275, pp. 1102-1106, 1997.
[25] A. Campion and P. Kambhampati, Surface-Enhanced Raman Scattering, Chemical Society Reviews, Vol. 27, pp. 241-250, 1998.
[26] N. P. W. Pieczonka and R. F. Aroca, Single Molecule Analysis by Surfaced-Enhanced Raman Scattering, Chemical Society Reviews, Vol. 37, pp. 946-954, 2008.
[27] R. A. Tripp, R. A. Dluhy, and Y. Zhao, Novel Nanostructures for SERS Biosensing, Nano Today, Vol. 3, pp. 31-37, 2008.
[28] S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, Nanofabricated SERS-Active Substrates for Single-Molecule to Virus Detection in Vitro: A Review, Biosensors and Bioelectronics, Vol. 61, pp. 232-240, 2014.
[29] S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, Controllable Nanofabrication of Aggregate-Like Nanoparticle Substrates and Evaluation for Surface-Enhanced Raman Spectroscopy, ACS Nano, Vol. 3, pp. 3845-3853, 2009.
[30] K. Sivashanmugan, J. D. Liao, P. L. Shao, B. H. Liu, T. Y. Tseng, and C. Y. Chang, Intense Raman Scattering on Hybrid Au/Ag Nanoplatforms for the Distinction of MMP-9-Digested Collagen Type-I Fiber Detection, Biosensors and Bioelectronics, Vol. 72, pp. 61-70, 2015.
[31] C. W. Chang, J. D. Liao, H. C. Chang, L. K. Lin, Y. Y. Lin, and C. C. Weng, Fabrication of Nano-Indented Cavities on Au for the Detection of Chemically-Adsorbed DTNB Molecular Probes through SERS Effect, Journal of Colloid and Interface Science, Vol. 358, pp. 384-391, 2011.
[32] J. L. Abell, J. D. Driskell, R. A. Dluhy, R. A. Tripp, and Y. P. Zhao, Fabrication and Characterization of a Multiwell Array SERS Chip with Biological Applications, Biosensors and Bioelectronics, Vol. 24, pp. 3663-3670, 2009.
[33] J. Fu, Z. Cao, and L. Yobas, Localized Oblique-Angle Deposition: Ag Nanorods on Microstructured Surfaces and Their SERS Characteristics, Nanotechnology, Vol. 22, p. 505302, 2011.
[34] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing, Nano Letters, Vol. 9, pp. 3922-3929, 2009.
[35] S. Habouti, M. Mátéfi Tempfli, C. H. Solterbeck, M. Es Souni, S. Mátéfi Tempfli, and M. Es Souni, On-Substrate, Self-Standing Au-Nanorod Arrays Showing Morphology Controlled Properties, Nano Today, Vol. 6, pp. 12-19, 2011.
[36] D. Gaspar, A. C. Pimentel, T. Mateus, J. P. Leitao, J. Soares, B. P. Falcao, A. Araujo, A. Vicente, S. A. Filonovich, H. Aguas, R. Martins, and I. Ferreira, Influence of the Layer Thickness in Plasmonic Gold Nanoparticles Produced by Thermal Evaporation, Scientific Reports, Vol. 3, p. 1469, 2013.
[37] J. M. Lyznicki, W. R. Kennedy, D. C. Young, W. D. Skelton, J. P. Howe, R. M. Davis, M. Genel, M. S. Karlan, P. J. Numann, J. A. Riggs, P. J. Slanetz, M. A. Spillman, M. Williams, J. R. Allen, and R. C. Rinaldi, Educational and Informational Strategies to Reduce Pesticide Risks, Preventive Medicine, Vol. 26, pp. 191-200, 1997.
[38] G. Liu and Y. Lin, Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents, Analytical Chemistry, Vol. 77, pp. 5894-5901, 2005.
[39] M. Wang and Z. Li, Nano-Composite ZrO2/Au Film Electrode for Voltammetric Detection of Parathion, Sensors and Actuators B: Chemical, Vol. 133, pp. 607-612, 2008.
[40] N. D. Israelsen, C. Hanson, and E. Vargis, Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction, The Scientific World Journal, Vol. 2015, p. 124582, 2015.
[41] S. M. Chang and R. A. Doong, ZrO2 Thin Films with Controllable Morphology and Thickness by Spin-Coated Sol-Gel Method, Thin Solid Films, Vol. 489, pp. 17-22, 2005.
[42] Y. Pan, Y. Gao, D. Kong, G. Wang, J. Hou, S. Hu, H. Pan, and J. Zhu, Interaction of Au with Thin ZrO2 Films: Influence of ZrO2 Morphology on the Adsorption and Thermal Stability of Au Nanoparticles, Langmuir, Vol. 28, pp. 6045-6051, 2012.
[43] A. Camposeo, D. Spadaro, D. Magrì, M. Moffa, P. G. Gucciardi, L. Persano, O. M. Maragò, and D. Pisignano, Surface-Enhanced Raman Spectroscopy in 3D Electrospun Nanofiber Mats Coated with Gold Nanorods, Analytical and Bioanalytical Chemistry, Vol. 408, pp. 1357-1364, 2016.
[44] G. Keresztury, Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy, Vol. 1, p. 71, 2006.
[45] T. Waldmann, J. Klein, H. E. Hoster, and R. J. Behm, Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature Stm Study, ChemPhysChem, Vol. 14, pp. 162-169, 2013.
[46] A. Nawrocka, J. Lamorska, S. Grundas, and A. Stepniewski, Determination of Food Quality by Using Spectroscopic Methods, Advances in Agrophysical Research, pp. 347-368, 2013.
[47] P. Atkins and J. De Paula, Spectroscopy: Molecular Rotations and Vibrations, Elements of Physical Chemistry, pp. 447-471, 2013.
[48] H. J. Bowley, D. L. Gerrard, J. D. Louden, G. Turrell, D. J. Gardiner, and P. R. Graves, Introduction to Raman Scattering, Practical Raman Spectroscopy, pp. 1-12, 2012.
[49] 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期,頁25-28,1985。
[50] 李冠卿,「表面強化拉曼散射」,物理雙月刊,5期,頁185-188,1983。
[51] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chemical Physics Letters, Vol. 26, pp. 163-166, 1974.
[52] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Chapter 1 - Basic Theory, Introductory Raman Spectroscopy (Second Edition), pp. 1-94, 2003.
[53] R. L. McCreery, Magnitude of Raman Scattering, Raman Spectroscopy for Chemical Analysis, pp. 15-33, 2005.
[54] D. L. Jeanmaire and R. P. Van Duyne, Surface Raman Spectroelectrochemistry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 84, pp. 1-20, 1977.
[55] M. G. Albrecht and J. A. Creighton, Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode, Journal of the American Chemical Society, Vol. 99, pp. 5215-5217, 1977.
[56] M. Moskovits, Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals, The Journal of Chemical Physics, Vol. 69, pp. 4159-4161, 1978.
[57] S. Hong and X. Li, Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions, Journal of Nanomaterials, Vol. 2013, pp. 1-9, 2013.
[58] M. Moskovits, Surface-Enhanced Spectroscopy, Reviews of Modern Physics, Vol. 57, pp. 783-826, 1985.
[59] P. J. Huang, L. K. Chau, T. S. Yang, L. L. Tay, and T. T. Lin, Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection, Advanced Functional Materials, Vol. 19, pp. 242-248, 2009.
[60] Q. Ye, J. Fang, and L. Sun, Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group, The Journal of Physical Chemistry B, Vol. 101, pp. 8221-8224, 1997.
[61] A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering, Journal of the American Chemical Society, Vol. 117, pp. 11807-11808, 1995.
[62] Y. C. Liu and R. L. McCreery, Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces, Analytical Chemistry, Vol. 69, pp. 2091-2097, 1997.
[63] R. J. C. Brown and M. J. T. Milton, Nanostructures and Nanostructured Substrates for Surface-Enhanced Raman Scattering (SERS), Journal of Raman Spectroscopy, Vol. 39, pp. 1313-1326, 2008.
[64] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, Charge‐Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions, The Journal of Chemical Physics, Vol. 84, pp. 4174-4180, 1986.
[65] 吳民耀、劉威志,「表面電漿子理論與模擬」,物理雙月刊,28期,頁486-496,2006。
[66] A. Otto, Surface-Enhanced Raman Scattering: Classical and Chemical Origins, Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects, pp. 289-418, 1984.
[67] H. Xu and M. Käll, Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory, Surface-Enhanced Raman Scattering: Physics and Applications, pp. 87-103, 2006.
[68] L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé, and S. Efrima, Silver Metal Induced Surface Enhanced Raman of Bacteria, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 208, pp. 357-362, 2002.
[69] N. P. W. Pieczonka, P. J. G. Goulet, and R. F. Aroca, Applications of the Enhancement of Resonance Raman Scattering and Fluorescence by Strongly Coupled Metallic Nanostructures, Surface-Enhanced Raman Scattering: Physics and Applications, pp. 197-216, 2006.
[70] D. P. Pursell and H. L. Dai, Photochemistry of Vinyl Chloride Physisorbed on Ag(111) through Molecular Anion Formation Induced by Substrate Electron Attachment, The Journal of Physical Chemistry B, Vol. 110, pp. 10374-10382, 2006.
[71] Y. Fan, K. Lai, B. A. Rasco, and Y. Huang, Analyses of Phosmet Residues in Apples with Surface-Enhanced Raman Spectroscopy, Food Control, Vol. 37, pp. 153-157, 2014.
[72] S. Kumar, P. Goel, and J. P. Singh, Flexible and Robust SERS Active Substrates for Conformal Rapid Detection of Pesticide Residues from Fruits, Sensors and Actuators B: Chemical, Vol. 241, pp. 577-583, 2017.
[73] K. Sivashanmugan, H. Lee, C. H. Syu, B. H. C. Liu, and J. D. Liao, Nanoplasmonic Au/Ag/Au Nanorod Arrays as SERS-Active Substrate for the Detection of Pesticides Residue, Journal of the Taiwan Institute of Chemical Engineers, Vol. 75, pp. 287-291, 2017.
[74] J. Chevalier, What Future for Zirconia as a Biomaterial?, Biomaterials, Vol. 27, pp. 535-543, 2006.
[75] J. C. Garcia, L. M. R. Scolfaro, A. T. Lino, V. N. Freire, G. A. Farias, C. C. Silva, H. W. Leite Alves, S. C. P. Rodrigues, and E. F. da Silva Jr, Structural, Electronic, and Optical Properties of ZrO2 from Ab Initio Calculations, Journal of Applied Physics, Vol. 100, p. 104103, 2006.
[76] G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H. P. Bossmann, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Journal of the American Ceramic Society, Vol. 90, pp. 2935-2940, 2007.
[77] A. Vioux, Nonhydrolytic Sol-Gel Routes to Oxides, Chemistry of Materials, Vol. 9, pp. 2292-2299, 1997.
[78] C. J. Brinker and G. W. Scherer, Sol → Gel → Glass: I. Gelation and Gel Structure, Journal of Non-Crystalline Solids, Vol. 70, pp. 301-322, 1985.
[79] B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides, ACS Applied Materials & Interfaces, Vol. 7, pp. 6518-6529, 2015.
[80] Z. Zhang, Q. Yu, H. Li, A. Mustapha, and M. Lin, Standing Gold Nanorod Arrays as Reproducible SERS Substrates for Measurement of Pesticides in Apple Juice and Vegetables, Journal of Food Science, Vol. 80, pp. N450-N458, 2015.
[81] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study, The Journal of Physical Chemistry C, Vol. 111, pp. 13794-13803, 2007.
[82] Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation, Chemical Communications, Vol. 47, pp. 3784-3786, 2011.
[83] S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta, and J. Akhtar, Synthesis, Phase to Phase Deposition and Characterization of Rutile Nanocrystalline Titanium Dioxide (TiO2) Thin Films, Applied Surface Science, Vol. 264, pp. 737-742, 2013.
[84] C. Kranz and B. Mizaikoff, Microscopic Techniques for the Characterization of Gold Nanoparticles, Gold Nanoparticles in Analytical Chemistry, Vol. 66, pp. 257-299, 2014.
[85] G. Karlowatz, Strain Related Effects on the Band Structure , Advanced Monte Carlo Simulation for Semiconductor Devices, p. 1, 2009.
[86] 林麗娟,「X光繞射原理及其應用」,工業材料,86期,頁100-109,1994。
[87] R. J. H. Clark, Raman Microscopy in the Identification of Pigments on Manuscripts and Other Artwork, Scientific Examination of Art: Modern Techniques in Conservation and Analysis, pp. 162-185, 2003.
[88] H. Lee, C. K. Yao, J. D. Liao, P. L. Shao, M. H. N. Thi, Y. H. Lin, and Y. D. Juang, Annealed Thin-Film Zirconia Coating Adhered on 316L Stainless Steel as a Bio-Inert Indwelling Needle, Materials & Design, Vol. 88, pp. 651-658, 2015.
[89] Q. Li and P. Dong, Preparation of Nearly Monodisperse Multiply Coated Submicrospheres with a High Refractive Index, Journal of Colloid and Interface Science, Vol. 261, pp. 325-329, 2003.
[90] W. L. Zhai, D. W. Li, L. L. Qu, J. S. Fossey, and Y. T. Long, Multiple Depositions of Ag Nanoparticles on Chemically Modified Agarose Films for Surface-Enhanced Raman Spectroscopy, Nanoscale, Vol. 4, pp. 137-142, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top