|
[1]Q. P. Lu, Y. F. Yu, Q. L. Ma, B. Chen, and H. Zhang, 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions, Advanced Materials, vol. 28, pp. 1917-1933, Mar 2016. [2]B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, International Journal of Hydrogen Energy, vol. 32, pp. 1121-1140, Jun 2007. [3]A. Iulianelli, S. Liguori, J. Wilcox, and A. Basile, Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review, Catalysis Reviews, vol. 58, pp. 1-35, 2016. [4]F. M. Wang, T. A. Shifa, X. Y. Zhan, Y. Huang, K. L. Liu, Z. Z. Cheng, et al., Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, vol. 7, pp. 19764-19788, 2015. [5]M. R. Gao, Y. F. Xu, J. Jiang, and S. H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chemical Society Reviews, vol. 42, pp. 2986-3017, 2013. [6]M. A. Abbas and J. H. Bang, Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts, Chemistry of Materials, vol. 27, pp. 7218-7235, Nov 2015. [7]E. Gibney, The super materials that could trump graphene, Nature, vol. 522, pp. 274-276, 2015. [8]M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, vol. 5, pp. 263-275, Apr 2013. [9]A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, vol. 6, pp. 183-191, 2007. [10]T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy & Environmental Science, vol. 7, pp. 209-231, Jan 2014. [11]M. Pumera, Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage, Journal of Materials Chemistry A, vol. 2, pp. 8981-8987, 2014. [12]C. L. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chemical Society Reviews, vol. 44, pp. 2713-2731, 2015. [13]H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li, and Y. Cui, Physical and chemical tuning of two-dimensional transition metal dichalcogenides, Chemical Society Reviews, vol. 44, pp. 2664-2680, 2015. [14]H. Schmidt, F. Giustiniano, and G. Eda, Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects, Chemical Society Reviews, vol. 44, pp. 7715-7736, 2015. [15]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology, vol. 7, pp. 699-712, 2012. [16]C. G. Morales-Guio, L. A. Stern, and X. L. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chemical Society Reviews, vol. 43, pp. 6555-6569, Sep 2014. [17]H. Tributsch and J. Bennett, Electrochemistry and photochemistry of MoS2 layer crystals. I, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 81, pp. 97-111, 1977. [18]T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, science, vol. 317, pp. 100-102, 2007. [19]B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, et al., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, Journal of the American Chemical Society, vol. 127, pp. 5308-5309, 2005. [20]J. A. Turner, A realizable renewable energy future, Science, vol. 285, pp. 687-689, 1999. [21]A. B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution, Energy & Environmental Science, vol. 5, pp. 5577-5591, Feb 2012. [22]R. De Levie, The electrolysis of water, Journal of Electroanalytical Chemistry, vol. 476, pp. 92-93, 1999. [23]A. Paets van Troostwijk and J. Deiman, Sur une manière de décomposer l’eau en air inflammable et en air vital, J. Phys, vol. 35, pp. 369-378, 1789. [24]Y. C. Lin, D. O. Dumcencon, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nature Nanotechnology, vol. 9, pp. 391-396, May 2014. [25]C. Tsai, K. R. Chan, J. K. Norskov, and F. Abild-Pedersen, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides, Surface Science, vol. 640, pp. 133-140, Oct 2015. [26]M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. S. Li, and S. Jin, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, Journal of the American Chemical Society, vol. 135, pp. 10274-10277, Jul 2013. [27]Y. J. Tang, M. R. Gao, C. H. Liu, S. L. Li, H. L. Jiang, Y. Q. Lan, et al., Porous Molybdenum‐Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution, Angewandte Chemie International Edition, vol. 54, pp. 12928-12932, 2015. [28]J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, et al., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Advanced Materials, vol. 25, pp. 5807-5813, 2013. [29]D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano letters, vol. 13, pp. 1341-1347, 2013. [30]D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. P. Wu, et al., Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction, Journal of the American Chemical Society, vol. 137, pp. 1587-1592, Feb 2015. [31]D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, et al., Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction, Nano Letters, vol. 14, pp. 1228-1233, Mar 2014. [32]H. Li, K. Yu, C. Li, Z. Tang, B. Guo, X. Lei, et al., Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst, Scientific reports, vol. 5, 2015. [33]J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, and T. F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, ACS Catalysis, vol. 4, pp. 3957-3971, 2014. [34]X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chemical Society Reviews, vol. 44, pp. 5148-5180, 2015. [35]J. Chen, B. Lim, E. P. Lee, and Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today, vol. 4, pp. 81-95, 2009. [36]J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature materials, vol. 5, pp. 909-913, 2006. [37]X. Huang, Z. Y. Zeng, S. Y. Bao, M. F. Wang, X. Y. Qi, Z. X. Fan, et al., Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets, Nature Communications, vol. 4, Feb 2013. [38]Y. J. Wang, B. Z. Fang, H. Li, X. T. T. Bi, and H. J. Wang, Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells, Progress in Materials Science, vol. 82, pp. 445-498, Sep 2016. [39]E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, Journal of the American Chemical Society, vol. 135, pp. 9267-9270, 2013. [40]Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, et al., Graphitic Carbon Nitride Nanoribbons: Graphene‐Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution, Angewandte Chemie International Edition, vol. 53, pp. 13934-13939, 2014. [41]Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, et al., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS nano, vol. 8, pp. 5290-5296, 2014. [42]J. Yang and H. S. Shin, Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction, Journal of Materials Chemistry A, vol. 2, pp. 5979-5985, 2014. [43]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat Nanotechnol, vol. 6, pp. 147-50, Mar 2011. [44]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol, vol. 7, pp. 699-712, 2012. [45]J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides, Faraday discussions, vol. 140, pp. 219-231, 2009. [46]A. B. Laursen, S. Kegnæs, S. Dahl, and I. Chorkendorff, Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution, Energy & Environmental Science, vol. 5, pp. 5577-5591, 2012. [47]M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, Journal of the American Chemical Society, vol. 135, pp. 10274-10277, 2013. [48]M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A, vol. 3, pp. 11700-11715, 2015. [49]A. J. Smith, Y. H. Chang, K. Raidongia, T. Y. Chen, L. J. Li, and J. Huang, Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production, Advanced Energy Materials, vol. 4, 2014. [50]H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, et al., Transport properties of monolayer MoS2 grown by chemical vapor deposition, Nano letters, vol. 14, pp. 1909-1913, 2014. [51]M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nature nanotechnology, vol. 10, pp. 313-318, 2015. [52]Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, et al., Single‐layer semiconducting nanosheets: high‐yield preparation and device fabrication, Angewandte Chemie International Edition, vol. 50, pp. 11093-11097, 2011. [53]Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials, vol. 24, pp. 2320-2325, May 2012. [54]K. Kobayashi and J. Yamauchi, Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces, Physical Review B, vol. 51, p. 17085, 1995. [55]C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano letters, vol. 14, pp. 1381-1387, 2014. [56]J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution, Journal of the American Chemical Society, vol. 135, pp. 17881-17888, 2013. [57]M.-R. Gao, M. K. Chan, and Y. Sun, Edge-terminated molybdenum disulfide with a 9.4-A interlayer spacing for electrochemical hydrogen production, Nature communications, vol. 6, 2015. [58]Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang, T.-W. Ng, et al., Hierarchical nanotubes assembled from MoS 2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries, Nano Energy, vol. 22, pp. 27-37, 2016. [59]H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, et al., 2D monolayer MoS2–carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage, Advanced Materials, vol. 27, pp. 3687-3695, 2015. [60]N. Savjani, E. A. Lewis, M. A. Bissett, J. R. Brent, R. A. Dryfe, S. J. Haigh, et al., Synthesis of Lateral Size-Controlled Monolayer 1 H-MoS2@ Oleylamine as Supercapacitor Electrodes, Chemistry of Materials, vol. 28, pp. 657-664, 2016. [61]C. Altavilla, M. Sarno, and P. Ciambelli, A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@ oleylamine (M Mo, W), Chemistry of Materials, vol. 23, pp. 3879-3885, 2011. [62]J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, et al., 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode, ACS nano, vol. 9, pp. 3837-3848, 2015. [63]X. Xie, Z. Ao, D. Su, J. Zhang, and G. Wang, MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface, Advanced Functional Materials, vol. 25, pp. 1393-1403, 2015. [64]Y. Shi, Y. Wang, J. I. Wong, A. Y. S. Tan, C.-L. Hsu, L.-J. Li, et al., Self-assembly of hierarchical MoSx/CNT nanocomposites (2( x( 3): towards high performance anode materials for lithium ion batteries, Scientific reports, vol. 3, 2013. [65]K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, et al., Graphene-like MoS 2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries, Journal of Materials Chemistry, vol. 21, pp. 6251-6257, 2011. [66]B. Hu, L. Q. Mai, W. Chen, and F. Yang, From MoO3 Nanobelts to MoO2 Nanorods: Structure Transformation and Electrical Transport, Acs Nano, vol. 3, pp. 478-482, Feb 2009. [67]B. Hu, L. Mai, W. Chen, and F. Yang, From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport, Acs Nano, vol. 3, pp. 478-482, 2009. [68]J. Zhan, Z. Zhang, X. Qian, C. Wang, Y. Xie, and Y. Qian, Solvothermal synthesis of nanocrystalline MoS 2 from MoO 3 and elemental sulfur, Journal of Solid State Chemistry, vol. 141, pp. 270-273, 1998. [69]P. Kumar, M. Singh, R. K. Sharma, and G. B. Reddy, Reaction mechanism of core-shell MoO2/MoS2 nanoflakes via plasma-assisted sulfurization of MoO3, Materials Research Express, vol. 3, May 2016. [70]W. J. Zhou, D. M. Hou, Y. H. Sang, S. H. Yao, J. Zhou, G. Q. Li, et al., MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction, Journal of Materials Chemistry A, vol. 2, pp. 11358-11364, 2014. [71]L. J. Yang, W. J. Zhou, D. M. Hou, K. Zhou, G. Q. Li, Z. H. Tang, et al., Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction, Nanoscale, vol. 7, pp. 5203-5208, 2015. [72]Y. R. Liu, J. X. Gou, X. Li, B. Dong, G. Q. Han, W. H. Hu, et al., Self-sacrificial template method of Mo3O10( C6H8N)(2)center dot 2H(2)O to fabricate MoS2/carbon-doped MoO2 nanobelts as efficient electrocatalysts for hydrogen evolution reaction, Electrochimica Acta, vol. 216, pp. 397-404, Oct 2016. [73]R. D. Nikam, A. Y. Lu, P. A. Sonawane, U. R. Kumar, K. Yadav, L. J. Li, et al., Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction, Acs Applied Materials & Interfaces, vol. 7, pp. 23328-23335, Oct 2015. [74]B. W. Jin, X. M. Zhou, L. Huang, M. Licklederer, M. Yang, and P. Schmuki, Aligned MoOx/MoS2 Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes, Angewandte Chemie-International Edition, vol. 55, pp. 12252-12256, Sep 2016. [75]Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, and H. J. Dai, MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction, Journal of the American Chemical Society, vol. 133, pp. 7296-7299, May 2011. [76]Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, and X. Wang, Facile synthesis of low crystalline MoS 2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction, Nanoscale, vol. 5, pp. 7768-7771, 2013. [77]Y. Guo, X. Zhang, X. Zhang, and T. You, Defect-and S-rich ultrathin MoS 2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution, Journal of Materials Chemistry A, vol. 3, pp. 15927-15934, 2015. [78]L. Yang, W. Zhou, J. Lu, D. Hou, Y. Ke, G. Li, et al., Hierarchical spheres constructed by defect-rich MoS 2/carbon nanosheets for efficient electrocatalytic hydrogen evolution, Nano Energy, vol. 22, pp. 490-498, 2016. [79]X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, and S. Yang, Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction, Chemistry of Materials, vol. 26, pp. 2344-2353, 2014. [80]W.-H. Hu, R. Yu, G.-Q. Han, Y.-R. Liu, B. Dong, Y.-M. Chai, et al., Facile synthesis of MoS 2/RGO in dimethyl-formamide solvent as highly efficient catalyst for hydrogen evolution, Materials Letters, vol. 161, pp. 120-123, 2015. [81]Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, et al., Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams, Advanced Materials, vol. 25, pp. 756-760, 2013. [82]T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang, and L.-J. Li, Comparative study on MoS 2 and WS 2 for electrocatalytic water splitting, international journal of hydrogen energy, vol. 38, pp. 12302-12309, 2013. [83]Y.-H. Chang, R. D. Nikam, C.-T. Lin, J.-K. Huang, C.-C. Tseng, C.-L. Hsu, et al., Enhanced Electrocatalytic Activity of MoS x on TCNQ-Treated Electrode for Hydrogen Evolution Reaction, ACS applied materials & interfaces, vol. 6, pp. 17679-17685, 2014. [84]C.-L. Hsu, Y.-H. Chang, T.-Y. Chen, C.-C. Tseng, K.-H. Wei, and L.-J. Li, Enhancing the electrocatalytic water splitting efficiency for amorphous MoS x, international journal of hydrogen energy, vol. 39, pp. 4788-4793, 2014. [85]Y. Zhou, H. Xiao, S. Wang, X. Pan, Z. Wang, C. An, et al., Synthesis of layer-expanded MoS 2 nanosheets/carbon fibers nanocomposites for electrochemical hydrogen evolution reaction, Materials Chemistry and Physics, vol. 183, pp. 18-23, 2016. [86]V. Koroteev, L. Bulusheva, I. Asanov, E. Shlyakhova, D. Vyalikh, and A. Okotrub, Charge transfer in the MoS2/carbon nanotube composite, The Journal of Physical Chemistry C, vol. 115, pp. 21199-21204, 2011. [87]R. Ding, Y. Wu, Y. Chen, H. Chen, J. Wang, Y. Shi, et al., Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO 2/CNTs catalyst: an insight into the promoting effect of cobalt, Catalysis Science & Technology, vol. 6, pp. 2065-2076, 2016. [88]S. Ghatak and A. Ghosh, Observation of trap-assisted space charge limited conductivity in short channel MoS 2 transistor, Applied Physics Letters, vol. 103, p. 122103, 2013. [89]J. M. Bernhard, Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim IV Plots with Field Emission Energy Distributions, 1999.
|